
Embedded Target for Motorola® HC12

 For Use with Real-Time Workshop ®

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for Motorola HC12 User’s Guide
© COPYRIGHT 2003-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are trademarks
of The MathWorks, Inc.

Motorola is a registered trademark and HC12 is a trademark of Motorola, Inc.
Metrowerks and CodeWarrior are registered trademarks of Metrowerks Corporation.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Revision History: February 2003 Online only Version 1.0 (Release 13+)
June 2004 Online only Version 1.1 (Release 14)
October 2004 Online only Version 1.1.1 (Release 14SP1)
March 2005 Online only Minor update (Release 14SP2)

i

Contents

1
Getting Started

What Is the Embedded Target for Motorola HC12? 1-2
Feature Summary . 1-2

What You Need to Know to Use This Product 1-5

Required Products . 1-6

Product Limitations . 1-7

Installing the Product . 1-8

Using This Guide . 1-9

Demos and Test Models . 1-11

2
Configuring the Target

Hardware and Software Requirements 2-2
Host Platform . 2-2
Hardware Requirements . 2-2
Software Requirements . 2-2

Setting Up Your Installation . 2-4
Before You Begin . 2-4
Setup Overview . 2-4
Verifying Correct Operation . 2-5

Setting Up Your Target Hardware . 2-6

ii Contents

Setting Up Metrowerks CodeWarrior for HC12 2-7
Installing CodeWarrior for HC12 . 2-7
Installing Special Plug-in Files for CodeWarrior 1.2 2-7

Setting Target Preferences . 2-9
Target Preference Properties . 2-9
Editing Target Preferences . 2-12
Configuring the Memory Model via Target
Preference Properties . 2-12

3
Generating Real-Time HC12 Programs

Introduction . 3-2
Before You Begin . 3-2

The Example Model . 3-3

Tutorial: Creating an Application with
the Embedded Target for Motorola HC12 3-5

Selecting the Memory Model . 3-5
Setting the Model Parameters for Code Generation 3-7
Building the Application . 3-9
Downloading and Running the Application 3-10
Where to Go Next . 3-11

4
Setting HC12 Timing Parameters

Introduction . 4-2

The hc12_closest_st Function . 4-4

Computing the Sample Time for Your Model 4-6

iii

Sample Time Computation and the Master Block 4-7

5
Code Generation and Code Generation Reports

Build Directories and Files . 5-2

Code Generation Options . 5-5
Target-Specific Options . 5-5
Generating Integer-Only Code . 5-7
Restrictions on Code Generation Options 5-8

Code Generation Reports . 5-10

6
Creating Device Drivers

Creating Device Drivers for the Embedded Target for
Motorola HC12 . 6-2

Related Documentation . 6-2
Overview of Device Driver Development
Methodology . 6-3
Hardware Resource Management Overview 6-5
Adding Resource Keywords to the
hc12regs Package . 6-6
Implementing Resource Management Compatible
Device Drivers . 6-13

iv Contents

7
Creating Custom Project Stationery

Creating Custom CodeWarrior Project Stationery 7-2
Introduction . 7-2
Project Stationery Structure Overview . 7-3
Overview of MathWorks Project Files . 7-5
Setting Up the Project Stationery Directories 7-7
Setting Up the rtwlib Subproject . 7-8
Creating an Empty MathWorks Project File 7-10
Modifying the CodeWarrior Project File (.mcp File) 7-10
Using The New Project Stationery . 7-13

8
Block Reference

Blocks – Categorical List . 8-2
I/O Device Drivers . 8-2
Timing and Resource Management . 8-2

Blocks - Alphabetical List . 8-3

Index

1
Getting Started

What Is the Embedded Target for
Motorola HC12? (p. 1-2)

Overview of the product; summary of major features.

What You Need to Know to Use This
Product (p. 1-5)

Prerequisites for using the Embedded Target for
Motorola® HC12.

Required Products (p. 1-6) Mathworks products required when using the Embedded
Target for Motorola HC12.

Product Limitations (p. 1-7) Current limitations and restrictions on the product.

Installing the Product (p. 1-8) Installation of the Embedded Target for Motorola HC12.

Using This Guide (p. 1-9) Suggested path through this document to get you up and
running quickly with the Embedded Target for Motorola
HC12.

Demos and Test Models (p. 1-11) Hyperlinks to demo models that illustrate product
features and how to use them.

1 Getting Started

1-2

What Is the Embedded Target for Motorola HC12?
The Embedded Target for Motorola HC12 is an add-on product for use with the
Real-Time Workshop® Embedded Coder. It provides a unified set of tools for
developing real-time applications for the Motorola HC12/HS12 processor. This
product was developed and tested with the Motorola EVB912DP256 board,
which employs an MC68HC9S12DP256 microcontroller.

The Embedded Target for Motorola HC12 generates code for the Motorola
HC12 processor from Simulink block diagrams. Code generation uses the
highly efficient Real-Time Workshop Embedded Coder format. Used in
conjunction with Simulink®, Stateflow®, and the Real-Time Workshop
Embedded Coder, the Embedded Target for Motorola HC12 lets you

• Design and model your system and algorithms.

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with the CodeWarrior for Motorola HC12
development environment.

The next section outlines the major features of the Embedded Target for
Motorola HC12.

Feature Summary

Support for RAM and Flash Memory Models
The EVB912DP256 provides 12K RAM and 256K flash memories. The 16-bit
addressing architecture allows direct access to only 64K of contiguous memory.
The memory segmentation model of the EVB912DP256 uses a PPAGE (byte)
register to page in 16k memory pages.

The Embedded Target for Motorola HC12 supports several memory models by
providing special CodeWarrior project stationery. You can select the desired
memory model from an option menu before generating code. The following
memory models are supported:

• Small memory model for RAM allows access to the entire 12K of RAM.

• Small memory model for flash allows direct access of up to 64K bytes of flash
memory.

What Is the Embedded Target for Motorola HC12?

1-3

• Banked memory model supports access of the entire 256K bytes of flash
memory on the EVB912DP256 board. The banked memory model can extend
beyond 256K bytes for boards that include additional memory.

Modifiable Project Stationery
The Embedded Target for Motorola HC12 uses special CodeWarrior project
stationery. This project stationery can be modified, extended, or replaced with
your own CodeWarrior project.

Using the CodeWarrior IDE, you can modify settings of the project stationery.
Project settings allow you to customize instructions provided to the assembler,
compiler, linker, and debugger. You can add your own custom C code to the
project stationery.

During code generation, project stationery is replicated and placed beneath
your current working directory. The build process automatically invokes
CodeWarrior and opens the project stationery. After the project is compiled and
linked, a click on the CodeWarrior IDE start button lets you download and run
your application to the EVB912DP256, via the ICD12 Background Debugging
Module (BDM).

Extensible Device Driver Library
The Embedded Target for Motorola HC12 provides a library of sample I/O
device drivers. You can use these device drivers as is, or modify, extend, or
replace them for your needs. The drivers are fully documented to help you
modify them to your requirements.

The library includes the following blocks:

• ADC Input (analog-to-digital converter)

• Digital Input

• Digital Output

• Master Block

• PWM Output (Pulse Width Modulation)

The driver blocks are based on a driver paradigm that is easy to understand
and replicate. With minimum effort, you can modify device drivers and extend
the device driver block library to support drivers that you may have already
implemented in production applications.

1 Getting Started

1-4

The Master block is a special block that is required in every model used for code
generation with the Embedded Target for Motorola HC12. The functions of the
Master block are summarized in the next section.

Resource Management via the Master Block
A resource collision occurs in a model when two or more device driver blocks
require the same hardware resource. For example, suppose that model
contains a Digital Output block, configured to use PORTB as the output
channel. If copies of this block are added to the model, each copy would be
contending for use of PORTB, resulting in a resource collision.

The Master block maintains a resource database that helps guard against
resource collisions. As device driver blocks are added to a model, they register
resource usage with the Master block. If a block requests a resource that is
already in use, a resource collision error is reported via a dialog box, and
Simulink highlights the conflicting blocks in the model. You can then correct
this error by selecting an alternate resource for the block, or by eliminating one
of the conflicting blocks. See “Hardware Resource Management” on page 8-9
for details.

Computation of Accurate, Hardware-Achievable Sample Time
The hc12_closest_st function helps you set a sample time for your model that
is achievable via the on-chip Clock Reset Generator (CRG). This feature lets
you simulate your model using the same step size that will be used when
generated code is deployed on the target hardware. See Chapter 4, “Setting
HC12 Timing Parameters” for details.

Report Generation
The Embedded Target for Motorola HC12 generates an extended version of the
HTML code generation report supported by the Real-Time Workshop
Embedded Coder. The HTML report includes detailed information on code size
for RAM and ROM. This information is obtained by post-processing the map
file generated by CodeWarrior during compilation.

What You Need to Know to Use This Product

1-5

What You Need to Know to Use This Product
This document assumes you are experienced with MATLAB®, Simulink,
Real-Time Workshop®, and the Real-Time Workshop Embedded Coder.

Minimally, you should read the following from the “Basic Concepts and
Tutorials” section of the Real-Time Workshop documentation:

• “Basic Real-Time Workshop Concepts.” This section introduces general
concepts and terminology related to Real Time Workshop.

• “Quick Start Tutorials.” This section provides several hands-on exercises
that demonstrate the Real-Time Workshop user interface, code generation
and build process, and other essential features.

You should also familiarize yourself with the Real-Time Workshop Embedded
Coder documentation. In particular, you should read the following sections:

• “Data Structures and Code Modules”

• “Code Generation Options and Optimizations”

You should also be familiar with Metrowerks CodeWarrior for HC12 (including
the IDE, assembler, linker, and debugger). This is the supported HC12
cross-development environment. Familiarity with CodeWarrior projecxt
stationery is also helpful.

Familiarity with the target board and processor is also helpful. The Embedded
Target for Motorola HC12 has been developed and fully tested with the
Motorola EVB912DP256 board, which employs an MC68HC9S12DP256
microcontroller.

Both the EVB912DP256 board and the Metrowerks CodeWarrior for HC12
cross-development environment are included in the Motorola
M68KIT912DP256 HCS12 Development Kit. You can find information about
this kit on the Motorola Web site:
http://e-www.motorola.com.

1 Getting Started

1-6

Required Products
The Embedded Target for Motorola HC12 requires these products:

• MATLAB 7.0 (Release 14)

• Simulink 6.0 (Release 14)

• Real-Time Workshop 6.0 (Release 14)

• Real-Time Workshop Embedded Coder 4.0 (Release 14)

For more information about any of these products, see either

• The online documentation for that product

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Product Limitations

1-7

Product Limitations
This section describes limitations on the Embedded Target for Motorola HC12
In the current release, these are:

• The Embedded Target for Motorola HC12 does not support any of the
Simulink blockset products.

• Certain ERT code generation options are not supported (or are restricted) by
the Embedded Target for Motorola HC12. The restricted options are
described in “Restrictions on Code Generation Options” on page 5-8.

1 Getting Started

1-8

Installing the Product
Your platform-specific Installation guide provides all of the information you
need to install the Embedded Target for Motorola HC12.

Prior to installing the Embedded Target for Motorola HC12, you must obtain a
License File or Personal License Password from The MathWorks. The License
File or Personal License Password identifies the products you are permitted to
install and use.

After the installation process completes, verify the installation by clicking the
MATLAB Start button. Follow the Start ->Simulink ->Embedded Target for
Motorola HC12 links. You should now see the Embedded Target for Motorola
HC12 submenu.

After installing Embedded Target for Motorola HC12, proceed to the next
section, “Using This Guide” where you will find a quick summary of this
document and a quick path to information about the hardware and software
required for use with the product, how to set up your target hardware,
cross-development tools, and target preferences properties, and how to
generate and download applications.

Using This Guide

1-9

Using This Guide
We suggest the following path to get acquainted with the Embedded Target for
Motorola HC12 and gain hands-on experience with the features most relevant
to your interests:

• Read “What Is the Embedded Target for Motorola HC12?” on page 1-2 to
learn about the general features of the product.

• Read “What You Need to Know to Use This Product” on page 1-5 to
understand the prerequisite knowledge required to use the Embedded
Target for Motorola HC12, and to learn about related documentation you
may need to read.

• Read Chapter 2, “Configuring the Target” to learn how to set up your
development environment and configure the Embedded Target for Motorola
HC12.

• Read Chapter 3, “Generating Real-Time HC12 Programs” to work through a
step-by-step tutorial on generating and deploying an application on target
hardware.

• Read Chapter 4, “Setting HC12 Timing Parameters” for important
information on how to set a correct and hardware-achievable sample time for
your model.

• Read Chapter 5, “Code Generation and Code Generation Reports” to learn
more about code generation options, report generation features, and current
limitations of the Embedded Target for Motorola HC12.

• The Embedded Target for Motorola HC12 provides a library of device driver
blocks. The Master block (required for all models) is particularly important,
as it provides facilities for precise control of the HC12 real-time clock, and
also manages requests for hardware resources from blocks. For device driver
information see

- Chapter 8, “Block Reference” for descriptions of the device driver blocks
provided in the Embedded Target for HC12 block library.

- “Hardware Resource Management” on page 8-9 for details on how the
Master block manages requests for hardware resources from blocks, and
how it deals with potential conflicts in resource usage.

1 Getting Started

1-10

• Finally, advanced information on customization of the target is available in

- Chapter 6, “Creating Device Drivers.” This chapter contains information
on how to create your own device drivers or customize existing drivers.

- Chapter 7, “Creating Custom Project Stationery.” This chapter describes
how to create customized CodeWarrior project stationery for use with
processors in the HC12 family.

• See also “Demos and Test Models” in the next section.

Demos and Test Models

1-11

Demos and Test Models
We have provided a number of demos and test models to help you become
familiar with features of the Embedded Target for Motorola HC12.

If you are reading this document online in the MATLAB Help browser, you can
run the demos by clicking on the links in the Command column of the following
table.

Alternatively, you can access the demo suite from the MATLAB Start button.
Follow the Start ->Simulink ->Embedded Target for Motorola
HC12->Demos links. You can also type demo commands from the MATLAB
command prompt, as in this example:

hc12_adc

Note that these demos assume use of a Motorola EVB912DP256 evaluation
board. The EVB912DP256 features a block of LEDs that are wired to digital
output port B. Most of the demos use the LEDs to provide a simple form of
visual feedback from the generated programs.

Table 1-1: Embedded Target for Motorola HC12 Demos and Test Models

 Command Demo Topic

hc12_adc Demonstrates the use of input and output device drivers. Reads a
value from an analog-to-digital converter (ADC) channel and writes
an 8 bit result to digital output port B. The 8 bit value is visible on
the LEDs of the Motorola EVB912DP256 evaluation board.

hc12_led Generates a continually shifting bit pattern and writes it to digital
output port B. The bit pattern is visible on the LEDs of the Motorola
EVB912DP256 evaluation board.

hc12_pwm Demonstrates the use of the PWM Output block to generate pulse
width modulation (PWM) signals with different duty cycles on
several output channels of the Motorola EVB912DP256 evaluation
board. You can view the output signals on an oscilloscope.

1 Getting Started

1-12

hc12_di Demonstrates the use of digital input. Reads a signal from the digital
input port A input pins on the Motorola EVB912DP256 evaluation
board. The signal is delayed and then written to port B, driving the
LED display. Requires connection of a signal generator to the port A
input pins on the EVB912DP256.

hc12_fuelsys This version of the fuel_sys model has been converted to fixed point
to allow efficient code generation for the Motorola HC12
microcontroller. To generate code for this example, right-click on the
fuel rate controller subsystem. Then, select Real Time
Workshop -> Build Subsystem from the pop-up menu. Note that
this demo requires Stateflow, Stateflow® Coder and the Fixed-Point
Blockset.

Table 1-1: Embedded Target for Motorola HC12 Demos and Test Models (Continued)

 Command Demo Topic

2
Configuring the Target

Hardware and Software Requirements
(p. 2-2)

Hardware platforms supported by the product;
development tools (e.g., compilers, debuggers) required
for use with the product.

Setting Up Your Installation (p. 2-4) Overview of setup process.

Setting Up Your Target Hardware
(p. 2-6)

Hardware configuration for the EVB912DP256
evaluation board.

Setting Target Preferences (p. 2-9) Configuring environmental settings and preferences
associated with the Embedded Target for HC12.

2 Configuring the Target

2-2

Hardware and Software Requirements
This section describes the hardware components and software tools required by
the Embedded Target for Motorola HC12. Before you begin to work with the
target, make sure that you have all the required components.

Host Platform
The Embedded Target for Motorola HC12 supports only the PC as the host
platform, running Windows NT, Windows 2000, Windows JNT, or Windows
XP.

Hardware Requirements
The Motorola M68KIT912DP256 HCS12 Development Kit includes all
required hardware. The hardware includes the EVB912DP256 evaluation
board and +12 Vdc power supply. The board includes the MC68HC9S12DP256
microcontroller. The evaluation board and microcontroller specifications
include

• 12K RAM

• 256K flash memory

• RS232C interface

• DBM connectors

• Header access to all MCU pins

• 16-MHz oscillator

• CAN connectors

• Reset button

• ICD12 Background Debugging Module (BDM) device with cables

Software Requirements
• The MathWorks products required to use the Embedded Target for Motorola

HC12 are specified in “Required Products” on page 1-6.

Hardware and Software Requirements

2-3

• Metrowerks CodeWarrior for Motorola HC12 (Version 1.2 or 2.0), including
the IDE, assembler, linker, and debugger. The Motorola M68KIT912DP256
HCS12 Development Kit includes this software.

Note that CodeWarrior for Motorola HC12 (Version 1.2) does not support
Windows XP.

• If you are using CodeWarrior 1.2, two special CodeWarrior plug-in files
(DLLs) are required to integrate CodeWarrior with the Embedded Target for
Motorola HC12:
- Simulink.dll
- SimulinkPanel.dll

“Installing Special Plug-in Files for CodeWarrior 1.2” on page 2-7 describes
on how to obtain and set up these files within your CodeWarrior
environment.

If you are using CodeWarrior 2.0, these plug-ins are already included and are
installed by the CodeWarrior installer.

2 Configuring the Target

2-4

Setting Up Your Installation
The next sections describe how to configure your hardware, development
environment, and target preferences.

Note In this document, we assume that you are working with the Motorola
M68KIT912DP256 HCS12 Development Kit. This kit contains the
EVB912DP256 evaluation board, all required cables, and Metrowerks
CodeWarrior for Motorola HC12.

Before You Begin
Make sure that you have installed the Embedded Target for Motorola HC12
correctly, as described in “Installing the Product” on page 1-8.

Setup Overview
You should proceed through the following sections, in order:

• “Setting Up Your Target Hardware” on page 2-6 describes how to connect
and configure your development board.

• “Setting Up Metrowerks CodeWarrior for HC12” on page 2-7: describes how
to install the CodeWarrior for HC12 IDE.

• If you are using CodeWarrior 1.2, see “Installing Special Plug-in Files for
CodeWarrior 1.2” on page 2-7 for information on installation of plug-ins that
integrate the Embedded Target for Motorola HC12 with the CodeWarrior for
HC12 IDE. If you are using CodeWarrior 2.0, you can skip this step.

• “Setting Target Preferences” on page 2-9 describes how to specify target
preferences properties such as the location of the CodeWarrior project
stationery. Be sure to localize these properties appropriately for your
installation.

Setting Up Your Installation

2-5

Verifying Correct Operation
After you have completed the above setup steps, you should verify that all
components are working properly by generating a test application from a
Simulink model. Chapter 3, “Generating Real-Time HC12 Programs” provides
a tutorial that will take you through the process of building, downloading and
running a program based on a demo model.

2 Configuring the Target

2-6

Setting Up Your Target Hardware
To set up the EVB912DP256 board for use with the Embedded Target for
Motorola HC12, simply follow the instructions on the Quick Start card
provided with the Motorola M68KIT912DP256 HCS12 Development Kit.

In particular, follow the instructions in Section A of the Quick Start card
carefully, to ensure that

• The BDM device is properly connected to the parallel port (LPT1) of your
host PC.

• Jumper J17 is in the correct (factory default) position.

Setting Up Metrowerks CodeWarrior for HC12

2-7

Setting Up Metrowerks CodeWarrior for HC12
Setting up the Metrowerks CodeWarrior for HC12 environment for use with
the Embedded Target for Motorola HC12 requires two steps, described in the
next sections.

Installing CodeWarrior for HC12
To install CodeWarrior for HC12, simply follow the instructions in sections B-D
of the Quick Start card provided with the Motorola M68KIT912DP256 HCS12
Development Kit.

We also strongly recommend that you test your hardware and compiler
environment by building, downloading, and running a simple project, as
described in section E of the Quick Start card.

Installing Special Plug-in Files for CodeWarrior 1.2

Note If you are using CodeWarrior 2,0, you can skip this section. The
CodeWarrior plug-ins described are already provided with your CodeWarrior
installation.

If you are using CodeWarrior 1.2, you must obtain and install two special
CodeWarrior plug-in files (DLLs). These plug-ins support automatic addition
of generated source code files to a CodeWarrior project during code generation.

The plug-in files are

• Simulink.dll
• SimulinkPanel.dll

Before you can use the HC12 target, you must obtain and install the plug-ins
into your CodeWarrior directory structure. To do this:

1 Download the plug-ins, Simulink.dll and SimulinkPanel.dll, from the
Metrowerks Web site.

2 Close any CodeWarrior sessions you are running.

2 Configuring the Target

2-8

3 Copy Simulink.dll and SimulinkPanel.dll to your CodeWarrior plugins
Preference Panel directory, for example:

c:\CodeWarrior MOT_V1.2\Bin\plugins\Preference Panel\

4 Start a new CodeWarrior session and open any of the HC12 example projects
installed with CodeWarrior installation. These examples are found in the
<codewarror>\Examples\HC12 directory. One such example is the project
\ICD12 Target Interface\DP256\Leds -EVB_DP256 -Ram\Leds - EVB_DP256 - Ram.mcp

5 Press Alt+F7 to open the Settings dialog box. Under Target Settings
Panels, expand the Target list. You should now see the Simulink entry at
the end of the Target list.

Setting Target Preferences

2-9

Setting Target Preferences
This section describes environmental settings associated with the Embedded
Target for Motorola HC12. These settings, which persist across MATLAB
sessions and different models, are referred to as target preferences. Target
preferences let you specify properties such as the location of project stationery
files and other parameters affecting the generation, building, and downloading
of code. Most of the target preference properties for the Embedded Target for
Motorola HC12 are related to the selection of the memory model (banked, flash,
or RAM) for which the generated program is to be built.

This section is divided into three parts:

• “Target Preference Properties” on page 2-9 summarizes the target
preference properties.

• “Editing Target Preferences” on page 2-12 describes how to use the Target
Preferences Setup window.

• “Configuring the Memory Model via Target Preference Properties” on
page 2-12 describes how to specify the memory model for which your
generated programs will be built.

Target Preference Properties
Table 2-1 summarizes the preference properties, and their defaults, for the
Embedded Target for Motorola HC12.

2 Configuring the Target

2-10

Table 2-1: Embedded Target for Motorola HC12 Preferences Summary

Preference
Name

Description Default
Value

ProjectStationery Container for preferences data
related to project stationery
and libraries. Click + sign to
view
ProjectPathandFile_Banked,
ProjectPathandFile_Flash,
ProjectPathandFile_RAM, and
StaticLibraryDirectory
properties.

N/A

ProjectPathandFile_Banked Path to CodeWarrior project
stationery for Banked memory
model

See “Configuring the
Memory Model via Target
Preference Properties” on
page 2-12

ProjectPathandFile_Flash Path to CodeWarrior project
stationery for Flash memory
model

See “Configuring the
Memory Model via Target
Preference Properties” on
page 2-12

ProjectPathandFile_RAM Path to CodeWarrior project
stationery for RAM memory
model

See “Configuring the
Memory Model via Target
Preference Properties” on
page 2-12

StaticLibraryDirectory Directory where static object
libraries (such as rtwlib.lib)
are stored (see “Code
Generation Options” on
page 5-5

Defaults to the /hc12
subdirectory within the
system temporary
directory. (See tempdir in
the MATLAB Function
Reference.)

Setting Target Preferences

2-11

Note By default the ProjectStationery target preferences properties point
to project stationery installed with the Embedded Target for Motorola HC12.
This stationery is suitable for use with the demos and examples that you use
to familiarize yourself with the product. If you want to modify or customize
any of the installed project stationery, we suggest copying the entire project
stationery directory to another folder outside the MATLAB directory tree.
Then, modify your ProjectStationery target preferences properties to point
to this stationery. This approach will let you revert back to the original project
stationery installed with the Embedded Target for Motorola HC12 (if
necessary). For information on this topic, see Chapter 7, “Creating Custom
Project Stationery.”

TargetCompiler Name of installed
cross-compiler

'CodeWarrior'

TargetProjectType Memory model: select one of:
RAM, Flash, Banked. See
“Configuring the Memory
Model via Target Preference
Properties” on page 2-12

'Banked'

Table 2-1: Embedded Target for Motorola HC12 Preferences Summary (Continued)

Preference
Name

Description Default
Value

2 Configuring the Target

2-12

Editing Target Preferences
To configure the target preferences, you use the Target Preferences Setup
window. This window lets you view, edit, and save the preferences, or reset the
preferences to their default (factory) values.

To open the Target Preferences Setup window and edit target preferences:

1 Click on the MATLAB Start button. Follow the Start ->Simulink
->Embedded Target for Motorola HC12 links.

2 Select HC12 Target Preferences from the Embedded Target for Motorola
HC12 submenu. The Target Preferences Setup window opens.

3 Modify the properties you want to change.

4 Click OK to close the window and make your changes persistent.

Alternatively, you can open the Target Preferences Setup window by typing
the command

hc12editprefs

Configuring the Memory Model via Target
Preference Properties
The MathWorks provides CodeWarrior project stationery configured for use
with the Embedded Target for Motorola HC12. The project stationery supports
several memory models.

Setting Target Preferences

2-13

The default project stationery files for each memory model are located in
separate directories under
matlabroot\toolbox\rtw\targets\hc12\codewarrior. The following
memory models are supported:

• Small memory model for RAM allows access to the entire 12K of RAM. The
default project stationery file for this memory model is
rtw_dp256_ram\rtw_dp256_ram.mcp

• Small memory model for flash allows direct access of up to 64K bytes of flash
memory. The default project stationery file for this memory model is
rtw_dp256_flash\rtw_dp256_flash.mcp

• Banked memory model supports access of the entire 256K bytes of flash on
the EVB912DP256board. The banked memory model can extend beyond
256K bytes for boards that include additional memory. The default project
stationery file for this memory model is

rtw_dp256_banked_flash\rtw_dp256_banked_flash.mcp

The TargetProjectType target preference property selects which project
stationery is used. To set the memory model that will be used to build your
generated applications, select RAM, Flash, or Banked from the
TargetProjectType menu.

During the build process, the Embedded Target for Motorola HC12 replicates
the selected project stationery and places a copy under the MATLAB working
directory. Generated code is then placed into the sources directory within the
project. Once code generation is complete, the Embedded Target for Motorola
HC12 invokes CodeWarrior, which compiles the project.

Custom Project Stationery
You can create customized project stationery and use it instead of the default
project stationery. CodeWarrior provides project stationery for a number of
HC12 and HCS12 derivatives. If you need to generate code for one of the HC12
or HCS12 derivatives, you can modify the project stationery and use it instead
of the default project stationery provided by the Embedded Target for Motorola
HC12. For information on this topic, see Chapter 7, “Creating Custom Project
Stationery.”

2 Configuring the Target

2-14

3
Generating Real-Time
HC12 Programs

Introduction (p. 3-2) Chapter overview and preparation for the tutorial.

The Example Model (p. 3-3) Description of the demo model that is used in tutorial.

Tutorial: Creating an Application with
the Embedded Target for Motorola
HC12 (p. 3-5)

An exercise in building, downloading, and running an
application from a simple model.

3 Generating Real-Time HC12 Programs

3-2

Introduction
This chapter is a tutorial describing how use the Embedded Target for
Motorola HC12 to generate, download, and run real-time Motorola HC12
applications on a target development board.

This tutorial introduces you to the basic operation of the Embedded Target for
Motorola HC12. After you understand the basic feature set, read “Code
Generation Options” on page 5-5 for a complete list of all the options available.

Before You Begin
This tutorial requires specific hardware and properly configured software.
Please be sure that you have

• Installed the Embedded Target for Motorola HC12 as described in
“Installing the Product” on page 1-8.

• Set up your target hardware, cross-development tools, and target
preferences properties as described in Chapter 2, “Configuring the Target.”

The Example Model

3-3

The Example Model
This tutorial uses a simple demo model, hc12_led. This demo is provided with
the Embedded Target for Motorola HC12.

hc12_led (see Figure 3-1) is a single-rate model that uses a Digital Output
block to write to port B on the HC12. On the EVB912DP256, port B is wired to
the LEDs, so writing to port B can illuminate the LEDs.

In the hc12_led model, one set of blocks is used to shift a bit left. The result of
this operation is summed with the output of a similar set of blocks that shifts
a separate bit right. These shift operations are phased so that only one LED is
illuminated at any instant in time. As a result, the LEDs first show a bit
shifting consecutively to the left (8 times). Then, a bit is seen shifting
consecutively to the right (8 times).

This tutorial uses the model to provide a visual indication that the generated
program has successfully downloaded and started in target RAM. We will not
be concerned with the detailed operation of the model.

Begin by making a local copy of the model:

1 Open the model. If you are reading this document online in the MATLAB
Help browser, you can open the model by clicking on this link: hc12_led.

Alternatively, type the model name at the MATLAB command line:

hc12_led

2 Create a directory, hc12_tut, that is outside the MATLAB directory
structure. Make hc12_tut your working directory.

3 Save a local copy of the hc12_led model to your working directory. We work
with this copy throughout this exercise.

3 Generating Real-Time HC12 Programs

3-4

Figure 3-1: hc12_led Model

4 Notice the Master block in the upper left corner of the model. One (and only
one) Master block is required in every model used for code generation with
the Embedded Target for Motorola HC12. Unlike conventional blocks, the
Master block is not connected to other blocks via signal lines. The Master
block provides the following core functionality for the model:

- Sets the real-time clock period on the HC12. See Chapter 4, “Setting HC12
Timing Parameters” for details.

- Manages a resource database to arbitrate potentially conflicting requests
for HC12 hardware resources (such as ports) by device driver blocks. See
“Hardware Resource Management” on page 8-9 for details.

To learn how to configure the model and generate a program for your target
board, continue to “Tutorial: Creating an Application with the Embedded
Target for Motorola HC12” on page 3-5.

Tutorial: Creating an Application with the Embedded Target for Motorola HC12

3-5

Tutorial: Creating an Application with
the Embedded Target for Motorola HC12

In this tutorial, we build a real-time application from the demo model. We
assume that you are already familiar with Simulink and with the Real-Time
Workshop code generation and build process. You should also be familiar with
the CodeWarrior IDE.

In the following sections, we will

• Select the small memory model for RAM for code generation.

• Configure the model.

• Generate code and build a CodeWarrior project and an executable program.

• Manually download the executable code to a target board via the
CodeWarrior debugger.

• Observe the execution of the program on the target board.

Selecting the Memory Model
In this tutorial, we will generate code for the small memory model for RAM.
You select the memory model by editing target preferences in the Target
Preferences Setup window, as follows:

1 At the MATLAB command line, type

hc12editprefs

2 The HC12 Target Preferences Setup window opens.

3 Generating Real-Time HC12 Programs

3-6

3 The ProjectStationery.ProjectPathandFile_RAM preference property
shows the path to the project stationery file for the small memory model for
RAM. By default, this property is set to
matlabroot\toolbox\rtw\targets\hc12\codewarrior\rtw_dp256_ram\rtw_dp256_ram.mcp

Make sure that ProjectStationery.ProjectPathandFile_RAM is set to the
default.

4 Select the RAM option from the TargetProjectType pull-down menu.

The Embedded Target for Motorola HC12 is now configured to generate code
for the small memory model for RAM. Note that the memory model is not a
property of the model; it is a property of the target. All models built with this
target will use this memory model, until you reconfigure the target preferences
properties. For further information, see “Configuring the Memory Model via
Target Preference Properties” on page 2-12.)

Tutorial: Creating an Application with the Embedded Target for Motorola HC12

3-7

Setting the Model Parameters for Code Generation

1 Select Configuration parameters... from the Simulation menu. When the
Configuration Parameters dialog box opens, select the Solver pane. Make
sure that the Solver options are set as shown in the figure below.

Observe that the Solver Fixed step size is set to the workspace variable
hc12_base_st. For this demonstration model, the variable hc12_base_st
specifies the sample time for the model and for the Master block. To simplify
this tutorial, hc12_base_st has been preconfigured (using a preload
function) to a sample time that is achievable on the target hardware.

In an actual application, you would normally want to use the
hc12_closest_st function to help select a sample time for your model. This
function computes a sample time that is achievable on the actual hardware
(i.e., the on-chip Clock Reset Generator (CRG)). You would then store the
sample time value computed by hc12_closest_st in a workspace variable,
and use the workspace variable as the sample time parameter as required
in your model. See Chapter 4, “Setting HC12 Timing Parameters” for
further details.

3 Generating Real-Time HC12 Programs

3-8

2 Select the Real-Time Workshop pane.

3 Click on the Browse button to open the System Target File Browser. In the
browser, select Embedded Target for Motorola HC12 and CodeWarrior
(real-time).

4 Click OK to close the browser and return to the Real-Time Workshop pane.

5 Deselect the Generate HTML Report option. Then click Apply. The
Real-Time Workshop pane settings should now be as shown in this figure.

To simplify this tutorial, we have turned off generation of the HTML code
generation report. Later, you can learn about the HTML code generation
report in “Code Generation Reports” on page 5-10.

Tutorial: Creating an Application with the Embedded Target for Motorola HC12

3-9

6 Select the HC12 CodeWarrior options pane. Make sure that the options are
configured to their default settings, as shown in this figure.

Currently, the Build action menu has only one option.When Build is
selected, a CodeWarrior project is created and opened. Future versions may
support extended Build action capabilities.

7 The model is now configured for code generation. Save the model.

Building the Application
In this section, we will generate code and build both a CodeWarrior project and
an executable program:

1 Select the Real-Time Workshop pane. Click the Build button to initiate the
build process. The build process starts CodeWarrior, and begins to display
status messages in the MATLAB Command Window.

2 On successful completion of the build process, the following message is
displayed in the MATLAB Command Window:

Completed target action: build

3 Generating Real-Time HC12 Programs

3-10

3 Observe that the build process has created a build directory,
hc12_led_hc12rt, in your working directory. Use the dir command to view
the contents of the build directory.

dir hc12_led_hc12rt

For this model, the CodeWarrior project file rtw_dp256_ram.mcp has been
generated in the build directory. The build process has loaded this project
file into CodeWarrior, and instructed CodeWarrior to make the project.

The generated source code for the project is stored in the
hc12_led_hc12rt\sources subdirectory. The build process also creates a
number of other directories and files. For now, we are only concerned with
the CodeWarrior project file that has been generated. See “Build Directories
and Files” on page 5-2 for information on the detailed contents of the build
directory.

4 The executable code has been built by CodeWarrior and is ready to run.
Proceed to “Downloading and Running the Application” on page 3-10.

Downloading and Running the Application
In this final section of the tutorial, we will use CodeWarrior to download the
generated executable to target RAM and observe it running on the target
board:

1 Activate CodeWarrior and select the Project window. The project file
rtw_dp256_ram.mcp is displayed.

2 To download code and initiate a debugging session, click on the green Debug
arrow in the toolbar at the top of the Project window.

3 Code is downloaded to the target RAM. During downloading a progress
indicator is displayed. When downloading completes, the CodeWarrior
debugger window is opened.

4 To start program execution on the target, click on the green Start/Continue
arrow in the toolbar at the top of the Debugger window.

Tutorial: Creating an Application with the Embedded Target for Motorola HC12

3-11

5 Observe the LEDs on the target board. As the program executes, the LED
illumination changes in a pattern, as described in “The Example Model” on
page 3-3.

6 If you want, use the debugger controls to halt or continue the program, set
breakpoints, observe variables, etc. We recommend that you terminate the
debugging session and close CodeWarrior when done.

Using Generated CodeWarrior Projects

The build process has generated a complete CodeWarrior project (in this case,
rtw_dp256_ram.mcp) in the directory hc12_led_hc12rt. You can manually
open such a generated project into CodeWarrior and interact with it just as you
would any other CodeWarrior project.

You should exercise caution if you make any modifications to a generated
project or its source files. If you rebuild code from your model into the same
directory, the previous project will be overwritten.

Where to Go Next
An understanding of issues related to setting the HC12 hardware clock period
and the sample rate of the model is critical to correct use of the Embedded
Target for Motorola HC12. We strongly recommend that you read Chapter 4,
“Setting HC12 Timing Parameters” before starting to develop your own
applications.

3 Generating Real-Time HC12 Programs

3-12

4
Setting HC12 Timing
Parameters

Introduction (p. 4-2) Overview of issues related to setting a sample time for a
model that can be achieved by the target hardware.

The hc12_closest_st Function (p. 4-4) Using the hc12_closest_st function for computing a
hardware-achievable sample time.

Computing the Sample Time for Your
Model (p. 4-6)

Best practices for using the hc12_closest_st function to
select a hardware-achievable sample time for your model.

Sample Time Computation and the
Master Block (p. 4-7)

How the Master block uses the hc12_closest_st
function.

4 Setting HC12 Timing Parameters

4-2

Introduction
A common (but less than optimal) method of setting a model's sample time is
to specify a theoretically ideal value (even though this ideal sample time may
not be achievable on the target hardware). The code generator is then allowed
to round off to the nearest achievable value. This can result in a significant
discrepancy between the ideal sample rate (used in simulation) and the actual
hardware-achievable rate used when the generated code is deployed on the
target hardware.

The Clock Rate Generator (CRG) module functions as the HC12 system clock.
The Master block provided by the Embedded Target for Motorola HC12
generates the code that sets the CRG frequency by programming the oscillator
clock frequency and the bit fields of the 7-bit CRG RTI Control Register
(RTICTL):

• RTR Interrupt Modulus Ctr RTR[0:3]

• RTR Interrupt Prescale Rate Select RTR[4:6]

To help you configure the Master block timing parameters, the Embedded
Target for Motorola HC12 provides the hc12_closest_st function. This
function lets you determine a precise sample time value that is

• Achievable by the hardware

• As close as possible to a specified ideal sample time

We recommend that you use the sample time computed by hc12_closest_st to
set the Master block parameters, and also use it as the step size for your model.
This can increase the accuracy of your simulation, avoiding discrepancies
between the simulation behavior and real-time behavior of your model. The
goal is to ensure that the sample rate you select is applied with the greatest
possible accuracy. This is particularly valuable for calculations that require a
sample rate when computing coefficients for transfer functions or state-space
systems, since the sample rate could have significant effects on the overall
stability of the system.

The following sections describe how to use the hc12_closest_st function and
the Master block to set HC12 timing parameters. When reading the discussion,
refer to Table 3-2, “RTI Frequency Divide Rates” in the Motorola document
CRG Block User Guide. This document is available in PDF format
(S12CRGV2.pdf) on the Motorola Web site: http://e-www.motorola.com.

Introduction

4-3

The “RTI Frequency Divide Rates” table indicates the frequency divide rates
achievable by setting the bit fields of the RTI Control Register.

4 Setting HC12 Timing Parameters

4-4

The hc12_closest_st Function
hc12_closest_st is an M-file command. The full syntax is

[st,rtr30,rtr64,percentError] = hc12_closest_st(desiredST,osc)

where the input arguments are

• desiredST: The desired, or ideal, sample time for your model, in seconds.
This sample time may not be achievable by the CRG.

• osc: The CRG oscillator clock frequency, in Hz.

and the outputs are

• st : The hardware-achievable sample time that is closest to desiredST, given
the specified clock frequency (osc).

• rtr30 : The value for bits 0-3 of the RTR register that is required to achieve
st.

• rtr64 : The value for bits 4-6 of the RTR register that is required to achieve
st.

• percentError : The discrepancy (expressed as a percentage) between the
desired sample time (desiredST) and the achievable sample time (st).

The outputs rtr30, rtr64, and percentError may be omitted. The following
calls are legal.

[st] = hc12_closest_st(desiredST,osc)

[st, pctErr] = hc12_closest_st(desiredST,osc)

[st, rtr30, rtr64, pctErr] = hc12_closest_st(desiredST,osc)

In the following example, the ideal sample time is 0.01 second and the clock
frequency is 16 MHz.

[st,rtr30,rtr64,percentError] = hc12_closest_st(0.01,16000000)
Closest achievable sample time: 0.01024

st =

0.0102

The hc12_closest_st Function

4-5

rtr30 =

 4

rtr64 =

 4

percentError =

 2.4000

In the above example, the ideal sample time is not achievable at the given clock
rate. Changing the clock rate may not be feasible due to hardware
considerations. If so, the best choice in the above case would be to use a sample
time of 0.0102 in the model. The next section provides guidelines for consistent
use of the sample time computed by hc12_closest_st throughout a model.

4 Setting HC12 Timing Parameters

4-6

Computing the Sample Time for Your Model
When building a model, we recommend that you use hc12_closest_st to
compute the hardware-achievable sample time (st) that is closest (preferably
with a percentError less than 2%) to your ideal sample time. When you have
determined the st value, use st as a parameter throughout the model so that
it can be easily modified. Use st for the following purposes:

• Set the Sample time parameter of the Master block to st. Set the Clock
frequency parameter of the Master block to the value of the osc argument
you passed in to the hc12_closest_st function.

• Set the correct sample time for your model by using st as the Fixed step size
solver parameter for the model. Simply enter the string st into the Fixed
step size field of the Solver pane of the Configuration parameters dialog
box.

• Similarly, you can use st as the sample time parameter for blocks that
require sample times (such as Delay or ADC Input blocks).

• In a multirate model, each subrate must run at some integer submultiple of
the base rate. You can specify the sample rate of a block to run at 1/4 of the
base rate by specifying the block sample time as the expression 4*st.

Sample Time Computation and the Master Block

4-7

Sample Time Computation and the Master Block
The Master block calls the hc12_closest_st function whenever

• The Master block Clock frequency or Sample time parameters are
changed.

• Model compilation is performed (for example, when a Master block is added
to a model, when a simulation or code generation is initiated, or when an
Update Diagram is executed.).

The Master block passes in its Clock frequency and Sample time parameters
as the osc and desiredST arguments to hc12_closest_st. If the percentError
returned is less than or equal to 2%, the Master block deems the requested
Sample time to be within tolerance. In generated code, the Master block will
set the CRG using the values (rtr30, rtr64)returned by hc12_closest_st.

If the percentError returned is greater than 2%, the Master block displays a
warning message. For example, where the Sample time is 0.01 seconds and the
Clock frequency is 16 MHz, the returned percentError is 2.4. This figure
shows the warning message.

The warning message reports

• The percentError value

• The hardware-achievable sample time (0.01024 seconds) that is closest to the
requested Sample time parameter of the block. This hardware-achievable
sample time (not the Sample time parameter of the Master block) will be
used in code generation. The recommended corrective action would be to
change the Sample time of the Master block to 0.01024.

It is good practice, whenever possible, to use hc12_closest_st to compute a
hardware-achievable sample time when (or even before) you add a Master

4 Setting HC12 Timing Parameters

4-8

block to your model. By setting the Sample time of the Master block to the
computed value, you can minimize the occurrence of such warning messages.

Setting a correct, hardware-achievable sample time for the Master block does
not affect the sample time of the model itself, or of any other block in the model.
To achieve a consistent sample time throughout the model, follow the
recommendations in “Computing the Sample Time for Your Model” on
page 4-6.

5
Code Generation and Code
Generation Reports

Build Directories and Files (p. 5-2) Summary of the directories and files used in the build
process.

Code Generation Options (p. 5-5) Options specific to the Embedded Target for Motorola
HC12; generating integer-only code; requirements and
option restrictions that apply to the current release.

Code Generation Reports (p. 5-10) How to generate HTML code generation reports from the
build process.

5 Code Generation and Code Generation Reports

5-2

Build Directories and Files
The build directory structure and files created by the Embedded Target for
Motorola HC12 are based on the structure of the CodeWarrior project
stationery that is used in the build process. This structure differs somewhat
from the standard Real-Time Workshop Embedded Coder build directories.
Figure 5-1 summarizes the main directories and files created during the build
process.

Build Directories and Files

5-3

Figure 5-1: Directories and Files Created by Build Process

model_hc12rt

CodeWarrior project (.mcp) file

sources

bin

Generated model code

Generated main module

prm

cmd

html (optional)

HTML report files

Executable (.abs) and map files

Linker control files

Debugger command files

rtwlib Libraries (.lib files)

Startup code (STARTUP.C)

File lists (.mpf files)

5 Code Generation and Code Generation Reports

5-4

The top-level build directory is created in your working directory, using the
naming convention model_hc12rt, where model is the name of the generating
model.

The build directory contains the top-level CodeWarrior project files (.mcp files)
used during the build process. The files of interest to most users are contained
in the following subdirectories of the build directory:

• sources: Standard generated files including source code (model.c, model.h)
and generated main program module.

This subdirectory also contains startup code and files lists (.mpf files), which
are usually of interest only to advanced users (see “Creating Custom
CodeWarrior Project Stationery” on page 7-2).

• sources/html (optional): This directory is created if the Generate HTML
report option is selected (see “Code Generation Reports” on page 5-10). It
contains the HTML code generation report files.

• bin: Generated executable (.abs) file suitable for downloading and execution
on the target; also linker map file.

Other directories and files within the build directories are mainly of interest to
those who want to customize or extend the Embedded Target for Motorola
HC12. These are detailed in “Creating Custom CodeWarrior Project
Stationery” on page 7-2.

Code Generation Options

5-5

Code Generation Options
The Embedded Target for Motorola HC12 is an extension of the Real-Time
Workshop Embedded Coder embedded real-time (ERT) target configuration.
The Embedded Target for Motorola HC12 inherits the code generation options
of the ERT target, as well as the general code generation options of the
Real-Time Workshop. These options are available via the Configuration
Parameters dialog box. The options are described in the Real-Time Workshop
and Real-Time Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the
Embedded Target for Motorola HC12, and are either unsupported, or restricted
in their operation. See “Restrictions on Code Generation Options” on page 5-8
for details.

Target-Specific Options
The Embedded Target for Motorola HC12 has reserved an option category for
target-specific code generation options. You can set these options via the HC12
CodeWarrior options pane in the Real-Time Workshop pane of the
Configuration parameters dialog box.

5 Code Generation and Code Generation Reports

5-6

This figure shows the HC12 CodeWarrior options pane, with the options
configured to their defaults.

The options are

• Build action: Currently, this menu supports only one option, Build. The
build process generates code, creates a CodeWarrior project that includes the
generated code, and makes the project. You must download and run or debug
the code manually. Future releases may support extended capabilities such
as automated downloading.

Note also that if the Real-Time Workshop Generate code only option is
selected, a CodeWarrior project is created but a make is not performed.

Code Generation Options

5-7

• Force rebuild of the static libraries used by the model: This option
controls whether or not object file libraries (such as rtwlib.lib) referenced
by the model are rebuilt during the build process.

By default, this option is deselected. Since rebuilding object libraries may
involve compiling a large number of source files, we recommend the use of
the default.

In the default case, the build process checks to see if object libraries should
be rebuilt. It is sometimes necessary to rebuild rtwlib.lib due to changes
in the model, even if Force rebuild is deselected. For example, if
floating-point operations are introduced into a model that previously
generated integer-only code, rtwlib.lib must include floating-point code
and must be rebuilt.

When an object library is rebuilt, a copy of the library is retained in a
directory specified by the StaticLibraryDirectory target preferences
property (see “Target Preference Properties” on page 2-9). Subsequently, in
cases where no rebuild is required, the build process makes a copy of the
library from this directory.

If this option is selected, object-file libraries are always rebuilt.

Generating Integer-Only Code
The HC12 is a fixed-point processor. It is possible to use floating-point libraries
to support floating-point operations on the HC12. However, we recommend
using purely integer code whenever possible, for increased efficiency.

If your application uses only integer arithmetic, deselect the Support floating
point numbers option to ensure that generated code contains no floating-point
data or operations. When this option is deselected, an error is raised if any
noninteger data or expressions are encountered during code generation. The
error message reports the offending blocks and parameters.

The Support floating point numbers option is located on the Interface pane
of the Configuration Parameters dialog box. By default, this option is
deselected.

If you decide to use floating-point operations, you will need to make sure
Support floating point numbers is selected. Note that generation of
floating-point code increases the number of files required to build the
Real-Time Workshop library (rtwlib.lib). This results in significantly longer
build times.

5 Code Generation and Code Generation Reports

5-8

Restrictions on Code Generation Options
Certain ERT code generation options are not supported (or are restricted) by
the Embedded Target for Motorola HC12. Table 5-1 summarizes these
restricted options.

Table 5-1: Embedded Target for Motorola HC12 Restricted Code
Generation Options

Option Restriction

Hardware
implementation
pane

The options on the Hardware implementation
pane are preconfigured to the correct values for the
Motorola HC12. These options should not be
changed, and are therefore disabled.

MAT-file logging Option disabled.

Create Simulink
(S-Function) block

Option disabled.

External mode Not supported. An error message is displayed
during the build process if External mode is
selected.

Generate ASAP2
file

A generic ASAP2 file is generated. Note that
address values in the file are not updated from the
linker MAP file.

Generate an
example main
program

Option disabled. Note that the Embedded Target
for Motorola HC12 generates a target-specific main
program, hc12_main.c.

File customization
template

Option disabled.

Suppress error
status in real-time
model data
structure

This option is always selected. The option is
disabled so that it cannot be deselected.

Code Generation Options

5-9

GRT compatible
call interface

Option disabled.

 Custom code
options

The options in the lower half of the Custom Code
pane (Labeled Include list of additional) is not
supported by the Embedded Target for Motorola
HC12. This pane includes the fields Include
directores, Source files, and Libraries.

Code entered into these fields is ignored.

Table 5-1: Embedded Target for Motorola HC12 Restricted Code
Generation Options (Continued)

Option Restriction

5 Code Generation and Code Generation Reports

5-10

Code Generation Reports
The Embedded Target for Motorola HC12 supports an extended version of the
Real-Time Workshop Embedded Coder HTML code generation report.

The extended code generation report consists of several sections:

• The Generated Source Files section of the Contents pane contains a table
of source code files generated from your model. You can view the source code
in the MATLAB Help browser. Hyperlinks within the displayed source code
let you view the blocks or subsystems from which the code was generated.
Click on the hyperlinks to view the relevant blocks or subsystems in a
Simulink model window.

• The Summary section lists version and date information, options used in
code generation, and Simulink model settings.

• The Optimizations section lists the optimizations used during the build, and
also those that are available. If you chose options that generated less than
optimal code, they are marked in red. This section can help you select options
that will better optimize your code.

• The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

• The code profile report section includes a detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of the
generated code.

To generate a code generation report and view the profiling report,

1 Open the Configuration Parameters dialog box and select the Real-Time
Workshop pane.

2 In the Documentation subpane, select Generate HTML report. By default,
Include hyperlinks to model and Launch report after code generation
completes are also selected.

You can deselect either or both these options if desired.

3 Follow the usual procedure for generating code from your model or
subsystem.

Code Generation Reports

5-11

4 Real-Time Workshop writes the code generation report files in the html
subdirectory of the build directory. The top-level HTML report file is named
model_codegen_rpt.html or subsystem_codegen_rpt.html.

5 If you selected Launch report after code generation completes,
Real-Time Workshop automatically opens a MATLAB Web browser window
and displays the code generation report.

If you did not select Launch report after code generation completes, you
can open the code generation report (model_codegen_rpt.html or
subsystem_codegen_rpt.html) manually into a MATLAB Web browser
window, or into another Web browser.

6 If you selected Include hyperlinks to model, hyperlinks to blocks in the
generating model are created in the report files. When you view the report
files in MATLAB, clicking on these hyperlinks will display and highlight the
referenced blocks in the model.

Note You can also view the HTML report files, as well as the generated code
files, in the Simulink Model Explorer. See the Real-Time Workshop
documentation for details.

5 Code Generation and Code Generation Reports

5-12

6
Creating Device Drivers

Creating Device Drivers for the
Embedded Target for Motorola HC12
(p. 6-2)

How to develop custom device drivers for the Embedded
Target for Motorola HC12 and take advantage of the
hardware resource management mechanism.

6 Creating Device Drivers

6-2

Creating Device Drivers for the Embedded Target for
Motorola HC12

The Embedded Target for Motorola HC12 provides a library of ready-to-run
device driver blocks that perform many useful functions (see Chapter 8, “Block
Reference” for a description of these drivers). Your application may require you
to augment or even replace this set of device drivers. For example, you may
want to target an HC12 derivative processor other than the MC9S12DP256.
This chapter discusses techniques for development of device driver blocks for
use with the Embedded Target for Motorola HC12.

Device drivers for the Embedded Target for Motorola HC12 can (and should)
take advantage of the resource management mechanism provided by the
Master block. This mechanism is described in “Hardware Resource
Management Overview” on page 6-5.

Device driver blocks are implemented as fully inlined C-MEX S-functions.
“Implementing Resource Management Compatible Device Drivers” on
page 6-13 describes how to create drivers using the Simulink S-Function
Builder, and on how to implement resource management callbacks.

Related Documentation
In the following discussion, we describe a technique for creating drivers using
the Simulink S-Function Builder. This technique reduces some of the effort of
device driver development. However, use of the Simulink S-Function Builder
does not obviate the need to understand the code generation process and write
or modify a small amount of Target Language Compiler (TLC) code. Basic
familiarity with the following topics is required:

• Development of inlined C-MEX S-functions, including use of TLC

• Development of device driver blocks in general

• Use of the Simulink S-Function Builder

• Simulink data objects and the Simulink Data Class Designer

You can find relevant information on these topics in the following
documentation:

• Writing S-Functions documentation: Familiarity with writing fully inlined
S-functions is helpful in development of device driver blocks. The section
“Writing S-Functions for Real-Time Workshop” documents inlining and code

Creating Device Drivers for the Embedded Target for Motorola HC12

6-3

generation issues, including the RTWdata structure. The section “Building
S-Functions Automatically” documents the S-Function Builder.

• “Developing Embedded Targets for Real-Time Workshop Embedded Coder ”
includes a general chapter on “Creating Device Drivers.”

• The Using Simulink documentation provides information on Simulink data
objects, the Simulink Data Class Designer, and the Simulink S-Function
Builder.

• Target Language Compiler Reference Guide documentation: working
knowledge of TLC is needed to implement inlined device drivers, and/or pass
information into or out of the TLC phase of the build process. We suggest
that you work through the introductory sections, including “A TLC Tutorial.”

Overview of Device Driver Development
Methodology
The methodology described in this chapter was used to develop most of the
device drivers provided with the Embedded Target for Motorola HC12. In this
methodology, a device driver block is implemented as a masked subsystem that
contains an S-Function block. The underlying S-function is fully inlined and is
responsible for the device driver code.

The driver subsystem block is assumed to operate in the context of a model that
contains a Master block. This is a fundamental requirement of the Embedded
Target for Motorola HC12.

The driver subsystem block mask includes a mask initialization callback. This
callback interacts with the Master block’s resource management database by
reserving resource keywords that represent HC12 hardware resources, such as
PORTA or PORTB.

Figure 6-1 shows the relationship between a driver subsystem block(in this
case, the Digital Output driver) its underlying S-function, and a hardware
resource.

6 Creating Device Drivers

6-4

Figure 6-1: Relationship of Device Driver Subsystem, S-Function,
and Hardware Resource

The mask initialization callback executes whenever an Update Diagram
(CTRL+D) command is executed. The subsystem block passes parameters or
strings to the mask initialization callback. The callback requests that the
Master block reserve the specified resource keywords for the block. If the
resources are available, they are reserved for the block (without any visible
indication in the block diagram). Otherwise, blocks attempting to claim the
same resource(s) are highlighted, and an error message is displayed.

The underlying S-Function block must contain the tag 'HC12DriverData'. The
mask initialization callback searches all blocks below the level of the driver

Device Driver Subsystem Block (masked)
Mask Initialization callback:
* Reserves resource keyword (e.g. 'PORTA')
* Sets strings into RTWdata struct of underlying
S-function

Underlying S-Function Block
* Bound to DLL generated by S-Function Builder
* Tag property set to "HC12DriverData"
* TLC implementation is hand-written for code
generation.

Hardware Resource
(input) referenced in
RTWdata struct:
doport "PORTA"

Creating Device Drivers for the Embedded Target for Motorola HC12

6-5

subsystem block for an underlying S-function that contains the tag
'HC12DriverData'. (Each driver subsystem block should contain only one
S-Function block containing this tag.)

When the callback finds the underlying S-Function block, it places the
requested keywords into a MATLAB structure. At code generation time, this
structure is written into the RTWdata structure of the S-Function, within the
model.rtw file. In most cases, this approach greatly simplifies the effort of
writing TLC code, because the TLC code for the driver can simply use the field
name from the mask to extract the associated keyword.

In the discussion below, an S-function underlying a driver subsystem is created
by the Simulink S-Function Builder. The S-Function Builder is actually used
only to generate the DLL for the S-function. Everything else generated from
the S-Function Builder (such as the wrapper C file and TLC file) is discarded.
The generating S-Function Builder block is replaced with a standard
S-Function block, bound to the generated DLL. (This prevents end users from
accidently overwriting any hand-written driver code).

Note that the Digital Input, Digital Output, and PWM device driver blocks in
the Embedded Target for Motorola HC12 library were all created using the
S-Function Builder to generate the S-Function DLL.

However, the S-Function underlying the ADC Input block was written
manually. This block takes advantage of improvements that are currently
possible. For example, the ADC Input block automatically switches between
8-bit and 16-bit signals based on parameter settings.

Regardless of how the underlying S-Function block was created, its TLC
implementation must be written manually.

Hardware Resource Management Overview
Each model used for code generation with the Embedded Target for Motorola
HC12 must contain a Master block. The Master block provides a mechanism to
guard against conflicts among multiple blocks in contention for an HC12
hardware resource, such as a port. The user view of this mechanism is
described in “Hardware Resource Management” on page 8-9.

Your device drivers, like the blocks provided in the Embedded Target for
Motorola HC12 block library, should use the Master block for resource
management.

6 Creating Device Drivers

6-6

The Master block monitors resource usage by maintaining a database of
resource keywords. Keywords are strings that represent HC12 I/O ports,
registers (or even individual bits within ports or registers), and other hardware
resources.

To define keywords, we provide a user-extensible package of Simulink data
objects, the hc12regs package. Keywords are defined as properties of classes
within the hc12regs package. The hc12regs package includes classes related
to existing drivers (such as pwm or adc). You use the Simulink Data Class
Designer to add keywords to existing classes, or to create your own classes.

A driver block that needs access to a device resource registers a keyword
representing that resource in the Master block database. A block registers a
keyword via an M-file callback function. Registration takes place at the time
the block is added to the model. If no other block in the model has registered
the keyword, access to the resource is granted to the requesting block.
Otherwise, a resource collision is reported, and the offending blocks are
highlighted in the block diagram.

During code generation, the same callback function that registers keywords
can be used to propagate keywords (strings) to the model.rtw file in order to
minimize the TLC code needed for your device drivers.

The first step in creating a device driver that is compliant with the resource
management mechanism is to extend the hc12regs package by adding
keywords. The following section, “Adding Resource Keywords to the hc12regs
Package” on page 6-6, describes how to do this.

The second step is to create the driver itself. This step includes implementation
of callback functions to register keywords associated with the driver. This step
is described in “Implementing Resource Management Compatible Device
Drivers” on page 6-13.

Adding Resource Keywords to the
hc12regs Package

Note Before editing the hc12regs package, we strongly recommend that you
read the “Working with Data Objects” section of the Using Simulink
documentation, especially the section on the Simulink Data Class Designer.

Creating Device Drivers for the Embedded Target for Motorola HC12

6-7

The process of extending the hc12regs package consists of

• Selecting keywords that represent resources required by your driver.
“Selecting Resource Keywords” on page 6-7 provides guidelines.

• Using the Simulink Data Class Designer to add properties and/or classes
containing these keywords to the hc12regs package. This process is
described in these subsections:

- “Setting Up the hc12regs Package for Editing” on page 6-8

- “Adding Keywords to hc12regs Package” on page 6-11

- “Testing the Modified hc12regs Package” on page 6-12

Selecting Resource Keywords
This section provides guidelines (rather than hard and fast rules) for selection
of resource keywords.

The CodeWarrior header file 6812dp256.h defines an extensive list of symbols
for virtually every I/O device on the HC12 microcontroller. It is good practice
to use the symbols defined in this header file as your keywords for a particular
resource.

Note that a keyword must be unique within the class that contains it. If this
requirement is not met, the behavior of the resource management mechanism
is undefined.

However, it is possible (and not unusual) to use the same keyword in multiple
classes. For example, either the Digital Input and Digital Output driver blocks
can reserve port A or B. Therefore the keywords PORTA and PORTB are defined
for both the di and do (Digital Input and Digital Output) classes. In such cases,
the first block that reserves a keyword gets exclusive access to the associated
resource. For example, if a Digital Input block reserves PORTA, a subsequent
request for PORTA from a Digital Output block will be denied.

The level of detail with which you specify resource keywords depends on your
application. For example, suppose you want to define keywords associated with
a hypothetical 8-bit register, A_REG. The documentation and/or header file may
specify that A_REG can be accessed as either

• A full 8-bit byte (defined in a header file as A_REG)

• Individually defined bits within the register (defined in a header file as
A_REG0,AREG1..AREG7)

6 Creating Device Drivers

6-8

You may want to design your driver to reserve the entire register with one
keyword and the individual bits with additional keywords. Accordingly, you
would define a class areg with keywords A_REG,A_REG0,AREG1..AREG7.

Your device driver would reserve all of these keywords. This technique guards
against other device drivers that may try to reserve just one of the register bits.

You do not always need to specify keywords at this level of detail. For example,
the Digital Input and Digital Output driver blocks define keywords PORTA and
PORTB, representing locations that can be written to or read from. The related
Data Direction Registers (DDR) are also defined by the symbols DDRA and DDRB.
However, the Digital Input and Digital Output driver blocks actually reserve
only the keywords PORTA and PORTB. (See also the discussion of the Digital
Output driver in “Callback Example” on page 6-15.) This is acceptable as long
as it is guaranteed that no other drivers will reserve DDRA or DDRB.

Setting Up the hc12regs Package for Editing
The hc12regs package is provided in the directory

matlabroot\toolbox\rtw\targets\hc12\blocks\@hc12regs

Normally, the hc12regs package is filtered out of the Simulink Data Class
Designer display, to avoid the possibility that an end-user will accidentally
modify the package. Accordingly, you cannot open the hc12regs package into
Simulink Data Class Designer and edit it in place.

Creating Device Drivers for the Embedded Target for Motorola HC12

6-9

Instead, you must circumvent this restriction by making a local copy,
modifying it, and replacing the original package. Do this as follows:

1 As a precaution, make a copy of the original @hc12regs directory, and
rename it. (For example, rename it to backup_@hc12regs.)

2 Create a directory in which you will edit the hc12regs package. This
directory must not be in the MATLAB tree. For the purposes of this
discussion, we will call this directory /mykeywords.

3 Move the entire @hc12regs directory from

matlabroot\toolbox\rtw\targets\hc12\blocks\@hc12regs

to the /mykeywords directory you just created.

4 Make the /mykeywords directory your working directory.

cd mykeywords

5 Open the Simulink Data Class Designer by typing the following command
at the MATLAB prompt.

sldataclassdesigner

6 Your copy (in the /mykeywords directory) of the hc12regs package should
now be visible to the Simulink Data Class Designer. Verify that the
hc12regs appears in the Package name field of the Simulink Data Class
Designer, as shown in Figure 6-2.

6 Creating Device Drivers

6-10

Figure 6-2: hc12regs Package and pwm Class Visible in Simulink
Data Class Designer

7 Several preexisting classes are provided within the hc12regs package:

- pwm: keywords associated with the Pulse Width Modulation device driver

- adc: keywords associated with the ADC Input device driver

Creating Device Drivers for the Embedded Target for Motorola HC12

6-11

- di: keywords associated with the Digital Input device driver

- do: keywords associated with the Digital Output device driver

You can view preexisting classes and their properties by selecting each class
in the Class name field.

Adding Keywords to hc12regs Package
As shipped, the package files in the @hc12regs directory are marked read only.
Before adding keywords or otherwise editing the hc12regs package, the
read-only attribute of the package files must be turned off. Otherwise, changes
to the package cannot be written out.

To make the hc12regs files writable, first make sure that your working
directory is the /mykeywords directory that you created in the previous section.
Then, type the following at the MATLAB prompt.

!attrib -r /S *.*

To add keywords to the hc12regs package:

1 In the Simulink Data Class Designer, select hc12regs in the Package
name field.

2 Select the Class name to which you want to add keywords. Alternately,
create a new class by clicking on the New button.

3 Enter each keyword in the Property Name field of the class.

4 Set the Property Type for each keyword to string.

5 Make sure that the Factory Value for each keyword is empty. If this field is
not empty, it will not be possible for any block to use the resource.

Note also that:

- Keyword strings are case sensitive.

- If you intend to use any of the existing device drivers, you should avoid
deletion or modification of any keywords from the associated classes (pwm,
adc, di, and do). Deletion or modification of such keywords would make it
impossible for the existing device drivers to register their keywords in the
database.

6 Creating Device Drivers

6-12

6 When your edits are completed, click the Confirm Changes button.

7 In the Confirm Changes pane, click either Write All or Write Selected to
save your definitions.

8 Close the Simulink Data Class Designer window.

9 Exit MATLAB.

10 Move the entire @hc12regs directory from the /mykeywords directory back to

matlabroot\toolbox\rtw\targets\hc12\blocks\@hc12regs

11 Your modified version of the hc12regs package replaces the original version.
The package will now be filtered out of the Simulink Data Class Designer.
However, the package is accessible to the Embedded Target for Motorola
HC12 for resource management purposes. You can also examine the
package via MATLAB commands.

Note If you decide to make further modifications to the hc12regs package,
you must repeat the whole procedure of copying, editing, and replacing the
package, starting from “Setting Up the hc12regs Package for Editing” on
page 6-8.

Testing the Modified hc12regs Package

Note Before testing your modifications, make sure you have exited MATLAB
as instructed in the previous section. Then, start a new MATLAB session.
This is necessary to ensure that any prior package or class information is
ignored and only the newly modified package is used.

You can test your changes via the findpackage and get commands. For
example, suppose you added keywords to the do (Digital Output) class. The
following command verifies the existence of the package.

findpackage(`hc12regs')

Creating Device Drivers for the Embedded Target for Motorola HC12

6-13

ans =
 schema.package

In the following example, an object x of class hc12regs is instantiated and the
get method is invoked to report its properties. The list of the do properties
should include any that were added or changed.

x = hc12regs.do

x =
 hc12regs.do

x.get

ans =
 PORTA: ''
 PORTB: ''
 DDRA: ''
 DDRB: ''
...

If you have added a new class to hc12regs, confirm that your new class is valid.
For example, the following displays the properties of the class myclass.

get(hc12regs.myclass)

Implementing Resource Management Compatible
Device Drivers
This section describes how to generate a device driver S-function via the
Simulink S-Function Builder, add a resource management callback, and
modify the TLC code generated for the inlined implementation of your block.

The process consists of the following steps:

• Use the Simulink S-Function Builder to generate a C-MEX S-function (DLL)
for your device driver.

• Create a library for your driver blocks and add a subsystem block and an
S-Function block to your library. Bind the S-Function block to the DLL
generated in the previous step.

6 Creating Device Drivers

6-14

• Add a mask and mask initialization callback to your driver subsystem. The
callback registers your driver’s keywords with the resource database. The
callback may also write data into the RTWdata structure of the underlying
S-Function block. The validity of this structure should be tested by
generating and examining a model.rtw file.

Before writing your callback code, it is essential to read “Writing Mask
Initialization Code for Device Drivers” (below), as there are a number of
specific requirements for mask initialization callbacks written for the
Embedded Target for Motorola HC12.

• Customize the TLC code generated by the S-Function Builder, enabling your
block to generate C code.

These steps are expanded in the following sections.

Writing Mask Initialization Code for Device Drivers
This discussion assumes familiarity with

• Masked subsystems and with the Simulink Mask Editor. See “Creating
Masked Subsystems” in the Using Simulink documentation if you are not
familiar with masked subsystems.

• The use of the RTWdata structure for passing parameter information to the
code generation process. See “Writing S-Functions for Real-Time Workshop”
in the Writing S-Functions documentation for information on RTWdata.

To utilize the resource management mechanism of the Embedded Target for
Motorola HC12, device drivers must implement a mask initialization callback
that registers the driver’s keywords with the resource database. Note that this
mask initialization code belongs to the driver subsystem block in the library,
not the underlying S-Function block.

Your mask initialization callback must call the reservationmanager function
to register keywords. In addition, you may want your callback to pass data
(such as the names and values of block parameters) directly into the RTWdata
structure of the underlying S-function. For this purpose, we provide a special
function, hc12_setsfunrtwdata. By using the RTWdata structure in this way,
you can maintain consistent variable naming throughout the code generation
process, from the subsystem mask down to the device driver TLC code.

Creating Device Drivers for the Embedded Target for Motorola HC12

6-15

Note that your callback M-files must be located on the MATLAB path. We
recommend that you locate your callback M-files in the same directory as your
other driver-related files, such as DLLs.

Callback Example. The subsystem blocks in the Embedded Target for Motorola
HC12 block library contain many useful examples of mask initialization
callback code. In this section, we will examine some of the callback code for the
Digital Output block. While reading this discussion, it will be helpful to view
the mask of the Digital Output block in the Mask Editor.

Callbacks are invoked from the Initialization section of a the driver block
mask. Typically, the callback code in the mask consists of a single line that
invokes the body of the callback function, which is implemented in an M-file.
The M-file, in turn, makes the appropriate calls to reservationmanager and
related functions. The callbacks for the Embedded Target for Motorola HC12
blocks are implemented in the M-files named xxx_mcb.m under the
matlabroot\toolbox\rtw\targets\hc12\blocks directory. For the Digital
Output driver, the initialization code invokes the M-file callback
hc12_do_abbyte.m, as shown in this figure.

6 Creating Device Drivers

6-16

Figure 6-3: Mask Initialization Callback of Digital Output Driver

The function hc12_do_abbyte is named by the convention that this HC12
device driver writes to a digital output (do); writing a single byte to either port
A or B (abbyte).

The block parameter definition in the mask is shown by this figure.

Creating Device Drivers for the Embedded Target for Motorola HC12

6-17

Figure 6-4: Output Port Parameter Properties for Digital Output Driver

The user-selected Output port parameter is represented by the mask variable
doport. Note that in order for the hc12_do_abbyte_mcb function to correctly
retrieve the parameter value, the Evaluate option must be deselected.

The following code is a full listing of the hc12_do_abbyte_mcb function from
hc12_do_abbyte_mcb.m.

function hc12_do_abbyte_mcb(DOPortChoice)
 %
 % HC12 Digital Output (ports) A or B, Mask Initialization Callback.
 %
 % $Revision: 1.6 $ $Date: 2003/01/08 20:07:09 $
 % Copyright 2002 The MathWorks, Inc.

 % Create resource keyword to be reserved in resource database
 DOPortChoiceStr = strcat('PORT',DOPortChoice);

 % Try reserving 'PORTA' or 'PORTB' for this block instance
 % If the resource is not available, it will error out immediately.
 reservationmanager('do', {DOPortChoiceStr});

6 Creating Device Drivers

6-18

 modelRTWFields = struct(...\
 'doport', DOPortChoiceStr, ...\
 'ddrStr', strcat('DDR',DOPortChoice));

 % Insert modelRTWFields in the I/O block's S-function
 % containing the Tag 'HC12DriverData'
 hc12_setsfunrtwdata(modelRTWFields);

The hc12_do_abbyte_mcb function has two purposes:

• To register resource keywords and reserve the associated resources for the
block

• To pass parameter data to an RTWdata structure that will be created in the
model.rtw file at code generation time.

Resource Reservation. The Digital Output driver block call to
hc12_do_abbyte_mcb under the Initialization tab is

hc12_do_abbyte_mcb(doport)

The argument passed in (doport) is the value of the user-selected Output port
menu (which is either 'A' or 'B'). This string value is concatenated with
'PORT' to obtain the keyword string 'PORTA' or 'PORTB'.

The resultant keyword is passed in to the reservationmanager function. The
syntax of the reservationmanager function is

reservationmanager('className', {resources});

where className is the name of a driver class defined in the hc12regs package,
and resources is a cell array of resource keywords (strings).

In hc12_do_abbyte_mcb the call requests that the chosen port ('PORTA' or
'PORTB') be reserved for the block, which is associated with the do (Digital
Output) class.

reservationmanager('do', {DOPortChoiceStr});

If the reservationmanager call fails, execution of the callback is terminated.
Otherwise, reservationmanager grants access to the port.

Note that hc12_do_abbyte_mcb does not reserve Data Direction Registers
'DDRA' or 'DDRB' since these are implied by the use of either PORTA or PORTB.

Creating Device Drivers for the Embedded Target for Motorola HC12

6-19

Creating RTWdata. The next section of the code builds a structure,
modelRTWFields, that contains information that is to be written (at code
generation time) to an RTWdata structure in the model.rtw file. For the Digital
Output driver block, this structure contains variable/value pairs representing
the user-selected port (doport) and Data Direction Register (ddrStr)
associated with the port.

modelRTWFields = struct(...\
 'doport', DOPortChoiceStr, ...\
 'ddrStr', strcat('DDR',DOPortChoice));

The final function call

hc12_setsfunrtwdata(modelRTWFields);

uses the set_param command to add this modelRTWFields structure into the
RTWdata of the S-function that underlies the Digital Output driver subsystem.

Note For hc12_setsfunrtwdata to work properly, the S-function receiving
the RTWdata must contain the tag 'HC12DriverData'. Make sure that you have
added this tag to your device driver S-function, as described in “Create Device
Driver Library and Add Your Driver Block” on page 6-22. Also, refer to the
hc12_setsfunrtwdata.m source code, located in
matlabroot\work\r12\toolbox\rtw\targets\hc12\blocks.

As an example of the resultant RTWdata, assume the user has selected output
port 'A'. The generated model.rtw file will contain an RTWdata structure
containing the following fields and their string values.

Tag "HC12DriverData"
 RTWdata {
doport "PORTA"
ddrStr "DDRA"
 }

The keywords in the RTWdata can be accessed easily in the TLC
implementation of the block. For example, given the RTWdata structure above,
the following generates code to initialize PORTA.

%<block.RTWdata.doport> = 0xFF;

6 Creating Device Drivers

6-20

Since this data is placed directly into the S-function’s RTWdata structure, it is
not necessary to write TLC code to scan through the entire model.rtw file to
locate the data.

Generate Driver C-MEX S-Function with Simulink
S-Function Builder

Note This section assumes basic familiarity with the Simulink S-Function
Builder. If you are unfamiliar with the S-Function Builder, we recommend
that you read the S-Function Builder section of the Using Simulink
documentation before proceeding.

To generate your driver S-function:

1 Create a new model.

2 Open the Simulink Library Browser. Locate the S-Function Builder block
in the User-Defined Functions sublibrary. Copy the S-Function Builder
block to your new model.

3 Double-click on the S-Function Builder block to open the S-Function
Builder dialog box.

4 Enter a newname into the S-function name field. The S-function name
should not duplicate the name of any existing driver DLL provided with the
Embedded Target for Motorola HC12. Check the directory where these
DLLs are stored:

matlabroot\toolbox\rtw\targets\hc12\blocks

5 Select the Data Properties tab. Then select the Input Ports tab. Specify the
data type for your driver's input signal. Leave the other properties at their
default values.

6 Select the Output Ports tab and specify the data type of your driver’s
output. We recommend specifying the same data type for both the output

Creating Device Drivers for the Embedded Target for Motorola HC12

6-21

and input signals, if possible. Leave the other properties at their default
values.

The current version of the S-Function Builder requires at least one input
and one output. However, a device driver block normally has either an
output signal or an input signal, but not both. You can work around this
problem by placing your S-Function block into a subsystem, and leaving the
unused input or output disconnected. (See “Create Device Driver Library
and Add Your Driver Block” on page 6-22).

7 Select the Parameters tab and specify block parameters (if any). Leave the
other properties at their default values.

8 Select the Build Info tab. Make sure that the Generate wrapper TLC
option is selected. Leave the other properties at their default values.

9 Click the Build button.

10 The S-Function Builder now generates

- A C-MEX S-function (DLL): drivername.dll

- Source code for the S-function: drivername.c

- Source code for a wrapper S-function drivername_wrapper.c

- A TLC wrapper implementation of the block for code generation:
drivername.tlc

On successful completion, hyperlinks to the generated files are displayed on
the Compilation Diagnostics pane.

11 Deselect the Generate wrapper TLC option.

The reason for deselecting this option is that in almost all cases, manual
editing of the generated TLC code is required. Deselecting the Generate
wrapper TLC will avoid accidental overwriting of your edited TLC file if you
build the S-function later.

12 Click Close. Save the model, to preserve the S-Function Builder
information.

6 Creating Device Drivers

6-22

Create Device Driver Library and Add Your Driver Block
The next step is to create a block library and add a driver block to the library:
We recommend you store your drivers in a library that is separate from the
Embedded Target for Motorola HC12 block library.

1 From the Simulink File menu, open a new Simulink library that will serve
as your device driver library.

2 Insert a Subsystem block (from the Ports and Subsystems sublibrary of the
Simulink Library Browser) into your library.

3 Open the Subsystem block.

4 Insert an S-Function block (from the User-Defined Functions sublibrary of
the Simulink Library Browser) into the Subsystem. Connect the
S-Function block to the input or output ports of the Subsystem as required:

- If your driver is an input driver, connect only its output. Connect a Ground
block to the Subsystem input.

- If your driver is an output driver, connect only its input. Connect a
Terminator block to the Subsystem input.

As an example, this block diagram shows the Subsystem connections for the
Digital Output block.

5 Your block must contain a special tag ('HC12DriverData') that is used by
the resource management mechanism. Select the S-Function block (within
your library), and use the set_param command to insert the tag.

set_param(gcb,'Tag','HC12DriverData')

The use of the 'HC12DriverData' tag will be explained later, in the section
“Implementing Resource Management Compatible Device Drivers” on
page 6-13.

Creating Device Drivers for the Embedded Target for Motorola HC12

6-23

6 Open the S-Function block and enter the name of your newly generated DLL
into the S-function name field.

7 If you defined any parameters for the driver in the S-Function Builder, enter
them into the S-function parameters field. Use the same variable names
that you used in the S-Function Builder. We strongly recommend explicitly
typecasting the variables to the desired data type.

Add Mask Initialization Code to Subsystem Block
This section assumes you have read “Writing Mask Initialization Code for
Device Drivers” on page 6-14 and written a callback M-file in accordance with
the guidelines given there.

Editing the Block Mask. Once you have written your callback M-file, edit your
driver block mask as follows:

1 Right-click on the driver subsystem block and select Edit mask from the
context menu.

2 Add device driver block drawing commands (if any) under the Icon tab. The
following drawing command example is from the Digital Output driver.

disp('PORT A or B\n(Digital Out)')

3 Enter block parameters via the Parameters tab. For example, the Digital
Output driver defines an Output port parameter doport, having Type
popup with options A and B. (see Figure 6-4 on page 6-17.)

4 Specify initialization commands via the Initialization tab. For the Digital
Output driver block, the initialization code invokes the M-file callback
hc12_do_abbyte.m. (See “Callback Example” on page 6-15.)

Test Generation of model.rtw file
To test code generation from your driver, place your driver block into a simple
model. Make sure the following Real-Time Workshop options are selected:

• Retain .rtw file

• Generate code only

Then, click Generate code. The generated model.rtw file is located in the
sources subdirectory of the build directory.

6 Creating Device Drivers

6-24

Edit the model.rtw file and search for the string RTWdata in the model.rtw file.
Depending on your model, the string RTWdata will appear in multiple locations.
However, you should see your keyword strings precisely as you provided them
in the mask initialization callback. For example, from the Digital Output
driver:

RTWdata {
doport "PORTA"
ddrStr "DDRA"
 }

Customize the S-Function Block TLC Code
The S-Function Builder generated TLC code for the S-Function block created
previously. This code is generic and will require extensive modification to
implement the driver functionality you require and make use of any RTWdata
information your driver has written to the model.rtw file. It is often necessary
to use a blockTypeSetup function to specify special #define or #include
directives specific to your driver.

Typically, you must also add an initialization or outputs function to the
generated TLC file. The example below is the initialization function from the
TLC implementation of the Digital Output block.

%function Start(block, system) Output

 /* Initialize digital outputs for port
%<block.RTWdata.doport> */
 %% Initialize DDRA or DDRB
 %<block.RTWdata.ddrStr> = 0xFF;
 %% Initialize output on PORTA or PORTB
 %% Note that for PORTB lights off = 0xFF
 %<block.RTWdata.doport> = 0xFF;
 %%
%endfunction

The full TLC source code is found in
matlabroot\toolbox\rtw\targets\hc12\blocks\hc12_sfcn_do_abbyte.tlc.

7
Creating Custom Project
Stationery

Creating Custom CodeWarrior Project
Stationery (p. 7-2)

How to use and/or customize the CodeWarrior project
stationery and project files provided with the Embedded
Target for Motorola HC12.

7 Creating Custom Project Stationery

7-2

Creating Custom CodeWarrior Project Stationery
This section describes how to convert and customize CodeWarrior project
stationery for use with the Embedded Target for Motorola HC12.

The first three subsections provide basic information you will need to create
stationery:

• “Introduction” on page 7-2 provides a conceptual overview of the use and
structure of project stationery.

• “Project Stationery Structure Overview” on page 7-3 summarizes the
directories and files contained in project stationery.

• “Overview of MathWorks Project Files” on page 7-5 describes special file lists
required in project stationery used with the Embedded Target for Motorola
HC12.

These sections are followed by a step-by-step description of procedures for
creating your own stationery. When creating stationery, work through these
sections in order:

• “Setting Up the Project Stationery Directories” on page 7-7: construct a
directory structure to contain the files for your stationery

• “Setting Up the rtwlib Subproject” on page 7-8: configure a subproject for
building the Real-Time Workshop library

• “Creating an Empty MathWorks Project File” on page 7-10: set up a
“placeholder” file list for use in your stationery

• “Modifying the CodeWarrior Project File (.mcp File)” on page 7-10: configure
the main CodeWarrior project file for use in the build process

• “Using The New Project Stationery” on page 7-13: reconfigure target
preferences to use your stationery in the build process.

Introduction
CodeWarrior provides project stationery and demo projects for a number of
processors in the HC12 and HCS12 family. The default project stationery
provided by the Embedded Target for Motorola HC12 is based on the
CodeWarrior stationery for the MC9S12DP256. (The original stationery is
located in the Icd-12 Target Interface\Dp256 directory of the CodeWarrior
installation.)

Creating Custom CodeWarrior Project Stationery

7-3

Project stationery consists of a number of directories and files. The
ProjectStationery properties of the target preferences point to the top level
of a selected project stationery structure to be used in the build process (see
“Configuring the Memory Model via Target Preference Properties” on
page 2-12). During the build process, the Embedded Target for Motorola HC12
replicates the entire directory structure of the selected project stationery and
places a copy in the build directory, model_hc12rt. Generated code is then
placed into the sources directory within the project.

If you need to generate code for an HC12 derivative microprocessor other than
the MC9S12DP256, you can modify the CodeWarrior project stationery for that
derivative and use it instead of the default project stationery provided by the
Embedded Target for Motorola HC12. After creating your custom project
stationery, you make it visible to the build process by setting the target
preferences ProjectStationery properties to point to the location of your
stationery.

Note that if you intend to support an HC12 derivative microprocessor, there
may be other tasks required in addition to creating custom project stationery.
In particular, you may need to create device drivers specific to a particular
HC12 derivative, and modify or remove the existing device drivers provided
with the Embedded Target for Motorola HC12. See “Creating Device Drivers
for the Embedded Target for Motorola HC12” on page 6-2 for information on
this topic.

Project Stationery Structure Overview
The CodeWarrior project stationery files are located in the
Metrowerks\CodeWarrior MOT_V1.2\Stationery\HC12 subdirectory within
your CodeWarrior installation. Stationery for specific HC12 derivatives is
located within subdirectories named for the derivative (e.g., \Icd-12 Target
Interface\B32). For each type of project stationery, CodeWarrior provides a
top-level project directory and several subdirectories. Metrowerks provides the
following documentation for the CodeWarrior project stationery:

• The readme.txt file provided in each project stationery directory

• The CodeWarrior manuals located in the Metrowerks\CodeWarrior
MOT_V1.2\CodeWarrior Manuals subdirectory within your CodeWarrior
installation

7 Creating Custom Project Stationery

7-4

To convert existing CodeWarrior project stationery for use with the Embedded
Target for Motorola HC12, you copy the stationery structure and modify it by
adding and removing certain files and setting project parameters via the
CodeWarrior IDE. The following table provides an overview of the contents of
a project stationery directory after customizing.

For an example of such a directory, refer to one of the Embedded Target for
Motorola HC12 project stationery directories, such as
matlabroot\toolbox\rtw\targets\hc12\codewarrior\rtw_dp256_flash.

Table 7-1: Summary of Project Stationery Structure

Directory Description

stationeryname Top-level directory of the project. It contains a project file
(stationeryname.mcp) and one or more debugger configuration files
(.ini files). The project file is a binary file that is modified via the
CodeWarrior IDE, as described in “Modifying the CodeWarrior
Project File (.mcp File)” on page 7-10. The.ini files are specific to
different memory models (RAM, flash, or banked RAM).

stationeryname/bin When a project is compiled, binaries (executables) and map files are
written to the bin subdirectory. In project stationery, this directory
should be empty.

stationeryname/cmd The cmd subdirectory contains debugger command files (.cmd files).
These files are executed at various stages of a debugging session.
For example, startup.cmd is executed to set up the target system
after a host/target the connection has been established. Normally,
you can use existing.cmd files as provided with the CodeWarrior
stationery.

Creating Custom CodeWarrior Project Stationery

7-5

Overview of MathWorks Project Files
The build process creates a CodeWarrior project from project stationery and
adds generated source code files to the project. To instruct CodeWarrior about
which files are to be added to the project, the Embedded Target for Motorola
HC12 generates special file lists called MathWorks Project Files(.mpf files).

The following.mpf files are required in the sources subdirectory of the project
directory:

• rtw_filelist.mpf specifies generated code files and header files to be added
to the project.

stationeryname/prm This directory contains linker parameter (.prm) files. These files
specify linker settings for a particular memory model. For a
description of the syntax of linker parameter files, see the
SmartLinker manual (Manual SmartLinker.pdf) in the
CodeWarrior Manuals\common directory.

For use with the Embedded Target for Motorola HC12, each .prm
file must contain a VECTOR command to define the timer interrupt
vector for the Real-Time Workshop step function (usually
rt_OneStep). You must obtain the timer interrupt vector address
from the documentation for your particular HC12 derivative. You
may also need to specify interrupt vectors for other devices you
want to support in the linker parameter file.

stationeryname/sources This directory contains generated source code and other files
required to build a generated program. These include special file
lists (“Overview of MathWorks Project Files” on page 7-5) generated
by the build process. These lists specify the generated source code
for the project and also the contents of a subproject that builds the
rtwlib.lib library. Project stationery must contain empty
(placeholder) file lists.

A startup file, START12.C, is also required in the sources
subdirectory. You can use a START12.C file from an existing
CodeWarrior project without modification.

Table 7-1: Summary of Project Stationery Structure

Directory Description

7 Creating Custom Project Stationery

7-6

• rtwlib.mpf specifies files required to build the Real-Time Workshop library,
rtwlib.lib. The library is built as a subproject. The library is built
differently depending on whether the generating model generated any
floating-point code.

Project stationery contains project-relative references to rtw_filelist.mpf
and rtwlib.mpf files. These references act as placeholders. The build process
regenerates these files as complete file lists. To use the.mpf files properly, the
CodeWarrior project must be modified as described in “Modifying the
CodeWarrior Project File (.mcp File)” on page 7-10.

Example File Lists
The following example rtw_filelist.mpf file was generated from the
hc12_led demo model.

D:\work\r12\extern\include\tmwtypes.h
D:\work\r12\simulink\include\simstruc_types.h
D:\work\r12\rtw\c\libsrc\rtlibsrc.h
hc12_led.c
hc12_led_data.c
hc12_main.c

The following example rtwlib.mpf was generated for an integer project (that
is, the generating model did not contain blocks requiring floating-point code).

d:\work\r12\extern\include\tmwtypes.h
d:\work\r12\simulink\include\simstruc_types.h
d:\work\r12\rtw\c\libsrc\rtlibsrc.h
d:\work\r12\rtw\c\libsrc\rt_enab.c
d:\work\r12\rtw\c\libsrc\rt_sat_prod_int8.c
d:\work\r12\rtw\c\libsrc\rt_sat_prod_int16.c
d:\work\r12\rtw\c\libsrc\rt_sat_prod_int32.c
d:\work\r12\rtw\c\libsrc\rt_sat_prod_uint8.c
d:\work\r12\rtw\c\libsrc\rt_sat_prod_uint16.c
d:\work\r12\rtw\c\libsrc\rt_sat_prod_uint32.c
d:\work\r12\rtw\c\libsrc\rt_sat_div_int8.c
d:\work\r12\rtw\c\libsrc\rt_sat_div_int16.c
d:\work\r12\rtw\c\libsrc\rt_sat_div_int32.c
d:\work\r12\rtw\c\libsrc\rt_sat_div_uint8.c
d:\work\r12\rtw\c\libsrc\rt_sat_div_uint16.c
d:\work\r12\rtw\c\libsrc\rt_sat_div_uint32.c

Creating Custom CodeWarrior Project Stationery

7-7

Setting Up the Project Stationery Directories
The first step in converting existing CodeWarrior custom project stationery for
use with the Embedded Target for Motorola HC12 is to make a copy of the
desired CodeWarrior project stationery. We recommend that you make a
separate project stationery structure for each memory model that you want to
support.

Your project stationery can be located anywhere outside the MATLAB
directory tree.

After copying the project stationery, do the following:

1 Rename the top-level directory of your stationery so that it is distinct from
the original CodeWarrior stationery. We suggest that the directory name
indicate the targeted HC12 derivative and memory model (e.g.,
Dx128_flash).

2 In the top-level directory:

- Delete any .ini files that are not relevant to your targeted memory model.
For example, if you are creating stationery for the flash memory model,
delete banked_flash.ini and ram.ini.

- Rename the project (.mcp) file. Again, we suggest that the name indicate
the targeted HC12 derivative and memory model (e.g., Dx128_flash.mcp).

3 Delete any files in the bin subdirectory.

4 Delete main.c from the sources subdirectory. Do not delete START12.C.

5 In the prm subdirectory:

- Delete any .prm files that are not relevant to your targeted memory model.
For example, if you are creating stationery for the flash memory model,
delete banked_flash.prm and ram.prm.

- Rename the remaining .prm file to project.prm. (This is the convention
used by the Embedded Target for Motorola HC12.)

- Edit the project.prm file and specify the timer interrupt vector that is to
be associated with rt_OneStep. This vector is specific to the HC12 variant

7 Creating Custom Project Stationery

7-8

CPU that you are targeting and must be obtained from the documentation
for that CPU.

For example, the default project stationery for the Embedded Target for
Motorola HC12 specifies

VECTOR ADDRESS 0xFFF0 rt_OneStep

- If required, define any other required interrupt vectors similarly.

Setting Up the rtwlib Subproject
The next step is to configure a subproject for building the Real-Time Workshop
library (rtwlib.lib). Within the project stationery for each of the supported
memory maps, the Embedded Target for Motorola HC12 provides an
rtwlib.mcp subproject. The subproject files are located in the directories:

• matlabroot\toolbox\rtw\targets\hc12\codewarrior\rtw_dp256_banked_flash
• matlabroot\toolbox\rtw\targets\hc12\codewarrior\rtw_dp256_flash
• matlabroot\toolbox\rtw\targets\hc12\codewarrior\rtw_dp256_ram

The rtwlib.mcp subprojects are, for the most part, pre-configured. You need
only copy the required file and edit a few settings, as follows:

1 Copy the file rtwlib.mcp from the project stationery directory appropriate
for your targeted memory map to the top level of your custom project
stationery directory.

2 Right-click on the hc12_rtwlib.mcp icon and select Properties from the
context menu. Deselect the Read-only property.

3 Open rtwlib.mcp into the CodeWarrior IDE.

4 Press ALT+F7 to open the Project Settings dialog box. You will be editing
parameters under the headings listed in the Target pane.

Creating Custom CodeWarrior Project Stationery

7-9

5 Select Compiler for HC12. Add any command switches appropriate to your
memory model. For example. if you are creating stationery for a banked
memory model, add the following option to the Command Line Arguments
list.

-Mb

6 Click OK and close the Project Settings dialog box.

Note The File Mappings options of the rtwlib.mcp subprojects are
configured to recognize and expand Mathworks Project Files (.mpf files)
correctly. When the build process is invoked, an rtwlib.mpf file is
automatically created in the sources subdirectory of your top-level project
stationery directory. The mapping for .mpf files is critical to correct operation
of the build process. Do not change or remove this mapping.

7 Close rtwlib.mcp and exit CodeWarrior IDE.

7 Creating Custom Project Stationery

7-10

Creating an Empty MathWorks Project File
Before continuing and editing any project (.mcp) files, you must create an
empty project file list, rtw_filelist.mpf. This Mathworks Project File must
exist in the sources subdirectory of your top-level project stationery directory.
The empty rtw_filelist.mpf file is added to your project stationery’s main
project file as a placeholder. After you have edited your project stationery, you
will delete the empty rtw_filelist.mpf file, but the project stationery will
retain the reference to it. When you generate code using the stationery, the
build process regenerates the file as a complete file list.

An easy way to create rtw_filelist.mpf from the CodeWarrior IDE is to select
the New... option from the File menu and create an empty text file. Save the
file as rtw_filelist.mpf in your sources subdirectory.

Modifying the CodeWarrior Project File (.mcp File)
This section describes how to customize the CodeWarrior project file (.mcp file)
for your stationery. Project files are in a binary format and must be edited in
the CodeWarrior IDE.

Add rtw_filelist.mpf to Project File
The first step in modifying your project file is to add a reference to the empty
rtw_filelist.mpf file that you created previously:

1 Open your project stationery file into the CodeWarrior IDE.

2 In the CodeWarrior project window, select Add File(s)... from the Project
menu.

3 The Add Files dialog box is displayed. Navigate to your sources
subdirectory and select rtw_filelist.mpf. Click Open.

4 rtw_filelist.mpf is now listed as a file at the top level of your project file.

Specify Project Settings
The next step in modifying your project file is to edit the project settings as
follows:

1 Press ALT+F7 to open the Project Settings dialog box. You will be editing
parameters under the headings listed in the Target pane.

Creating Custom CodeWarrior Project Stationery

7-11

2 Select Target Settings from the Target pane. Enter the desired name for
your custom stationery in the Target Name field.

3 If you want to specify access paths to be added to the CodeWarrior search
path, select Access Paths and enter them.

4 Select File Mappings from the Target pane. You must define a mapping for
.mpf files. Otherwise, the build process will not recognize or expand .mpf
files correctly. Make sure that a mapping for the file extension .mpf is
defined in the Extensions column. If it is not defined, add a mapping by
entering the following into the fields of the Mapping Info subpane:

- File type: TEXT

- Extension: .mpf

- Edit Language: None

- Compiler: Simulink SysGen

- Flags: Precompiled

7 Creating Custom Project Stationery

7-12

5 If you added a mapping for .mpf files in the previous step, click Add. Make
sure that the mapping has been added to the stationery by checking the
Extensions column.

6 Select Compiler for HC12 from the Target pane.We recommend entering
the following in the Command Line Arguments field.

-AddInclcpp_req_defines.h -Ol0 -WmsgSd4000 -WmsgSd4001

If you are creating stationery for a banked memory model, add the following
option to the Command Line Arguments list.

Mb

7 Select Linker for HC12 from the Target pane. Specify the following fields:

- Command Line Arguments: -WmsgSd1923

- Application Filename: This property specifies the name of the generated
executable (.abs file). We recommend model.abs.

Note that, unlike most Real-Time Workshop targets, the Embedded
Target for Motorola HC12 does not automatically name the generated
application after the source model. Instead, it uses the fixed filename in
the Application Filename property. This filename is also used by the
HTML code generation report.

8 Select Simulink. Specify the following fields:

- Group Name: Sources:Simulink

- File Name: {InputFile}

9 Click OK and close the Project Settings dialog box. Leave the project open,
as you will need it in the next section.

Add rtwlib Subproject
The next step in modifying your project file is to add the rtwlib.mpc subproject
to the CodeWarrior project. Before starting the procedure in this section, make
sure you have followed the instructions in “Setting Up the rtwlib Subproject”
on page 7-8. Add the subproject as follows:

1 In the CodeWarrior project window, select Add File(s)... from the Project
menu.

Creating Custom CodeWarrior Project Stationery

7-13

2 Navigate to your sources subdirectory and select rtwlib.mcp. file. Click
Open.

3 The Add Files dialog box is displayed. Select the appropriate memory model
option (RamApplication, FlashApplication, or BankedRam) and make sure
the other options are deselected. Then click OK.

4 rtwlib is now listed as a subproject at the top level of your project file.

5 Close the project and exit CodeWarrior.

Clean Up Project Directories
After exiting CodeWarrior:

1 Examine your top-level project stationery directory. As a side effect of
opening the project files, CodeWarrior has created subdirectories with the
suffix _Data (e.g., rtwlib_Data). These subdirectories are not needed and
you should delete them.

2 Delete the empty rtw_filelist.mpf from the sources subdirectory. Your
project stationery retains a file reference to rtw_filelist.mpf, and will
generate a correct file list during the build process.

Using The New Project Stationery
At this stage, you have completed the steps necessary to modify a project
stationery for use with the Embedded Target for Motorola HC12.

Before you can use your stationery in code generation, however, you must make
it visible to the build process by

• Specifying the path to your project stationery in the ProjectStationery
target preferences property that corresponds to the memory model supported
by your stationery. (See “Setting Target Preferences” on page 2-9.)

• Selecting the corresponding memory model in the TargetProjectType target
preferences property.

After setting the target preferences, test your stationery by opening a simple
model, such as the hc12_led demo, and initiating a build. Your project
stationery should be opened automatically by the Embedded Target for

7 Creating Custom Project Stationery

7-14

Motorola HC12 if you have specified the correct path and stationery name in
the target preferences.

8
Block Reference

Blocks – Categorical List (p. 8-2) Block summaries and links to the block reference
documentation, grouped by block library.

Blocks - Alphabetical List (p. 8-3) Block summaries and links to the block reference
documentation, listed alphabetically.

8 Block Reference

8-2

Blocks – Categorical List
The blocks in the Embedded Target for Motorola HC12 library are organized
into categories that support different functions. The tables below reflect that
organization.

I/O Device Drivers

Timing and Resource Management

Block Name Purpose

ADC Input Input driver for analog-to-digital converter (ADC)
device

Digital Input Input driver for use with digital input Port A or Port B

Digital Output Output driver for use with digital output Port A or
Port B

PWM Output Pulse width modulation (PWM) signal generation

Block Name Purpose

Master Set HC12 real-time clock rate and manage hardware
resources for model

Blocks - Alphabetical List

8-3

Blocks - Alphabetical List 8

This section contains function reference pages listed alphabetically.

ADC Input

8-5

8ADC InputPurpose Input driver for analog-to-digital converter (ADC) device

Library Embedded Target for Motorola HC12

Description The ADC Input block reads up to 8 channels of data from one of two 8-channel
analog-to-digital converter (ADC) banks. You can select either 8 or 10 bits of
resolution. When 10-bit resolution is selected, you can specify either right or
left justification of data within a 16-bit word.

Dialog Box

ADC bank
Select either bank 0 or 1. Each bank has 8 channels.

Channels
Specify input channel(s) 0-7. Specify multiple channels as a vector.

ADC resolution
Select either 8 bits or 10 bits of resolution. Default is 8-bit resolution.

Word alignment
If ADC resolution is set to 10 bits, you can select either right or left
justification of input data with a 16-bit word. Default is right justification.

ADC Input

8-6

If ADC resolution is set to 8 bits, input data is stored as a uint8, and
Word alignment is ignored.

Sample time
Sample time for the block. To set a correct, hardware-achieveable sample
time, you should use the hc12_closest_st function as described in
“Computing the Sample Time for Your Model” on page 4-6.

Digital Input

8-7

8Digital InputPurpose Input driver for use with digital input port A or port B

Library Embedded Target for Motorola HC12

Description The Digital Input device driver block is configured for use with either port A or
port B (represented in generated code as PORTA or PORTB). Select the desired
port from the Input port menu in the block dialog box.

The Digital Input driver block produces an input signal of data type uint8.
During a read, all 8 bits are read from the selected port.

Dialog Box

Input port
Select either port A or B.

Digital Output

8-8

8Digital OutputPurpose Output driver for use with digital input port A or port B

Library Embedded Target for Motorola HC12

Description The Digital Output device driver block is configured for use with either port A
or port B (represented in generated code as PORTA or PORTB). Select the desired
port from the Output port menu in the block dialog box.

The Digital Output driver block produces an output signal of data type uint8.
During a write, all 8 bits are written to the selected port.

Dialog Box

Output port
Select either port A or B.

Master

8-9

8MasterPurpose Set HC12 real-time clock rate and manage hardware resources for model

Library Embedded Target for Motorola HC12

Description One (and only one) Master block is required in every model used for code
generation with the Embedded Target for Motorola HC12. The Master block
provides the following core functionality for the model:

• Sets the real-time clock period on the HC12. See Chapter 4, “Setting HC12
Timing Parameters” for further information.

• Manages a resource database to arbitrate potentially conflicting requests for
HC12 hardware resources (such as ports) by device driver blocks.

Hardware
Resource
Management

The Master block provides a mechanism to guard against resource collisions.
Resource collisions can occur when multiple blocks are contending for an HC12
hardware resource, such as a port. For example, consider a Digital Output
device driver block that is configured to use port B as the output channel. If a
copy of this block is added to the model, two Digital Output blocks would be
contending for use of port B as an output. The function of the Master block is
to grant access to port B to one of the contending blocks, report the resource
collision condition, and highlight the offending blocks in the block diagram.
Depending on the resource, you can then correct the collision. In the case of two
Digital Output blocks contending for port B, you could reassign one of the
blocks to port A.

The Master block monitors resource usage by maintaining a database of
resource keywords. Keywords represent HC12 I/O ports, registers (or even
individual bits within ports or registers) and other hardware resources. When
a driver block needs access to a device resource, it registers a keyword in the
Master block database via a callback function. If no other block in the model
has registered the keyword, access to the resource is granted to the requesting
block. Otherwise, a resource collision is reported.

If you develop your own HC12 device driver blocks, you should make them
compatible with the Master block resource monitoring mechanism. To learn
how to do this, see “Creating Device Drivers for the Embedded Target for
Motorola HC12” on page 6-2.

Master

8-10

Dialog Box

Clock frequency
Sets clock frequency in Hz. The default value (16 MHz) is equal to the clock
frequency on the EVB912DP256 board.

Sample time
To set a correct, hardware-achieveable sample time, you should use the
hc12_closest_st function as described in Chapter 4, “Setting HC12
Timing Parameters.”

PWM Output

8-11

8PWM OutputPurpose Pulse width modulation (PWM) signal generation

Library Embedded Target for Motorola HC12

Description The PWM Output block generates a pulse wave with a duty cycle that is
determined by the input (modulator) signal. The PWM Output block writes to
a single channel (0-7).

The input signal is of data type uint8.

An input signal value of 0 corresponds to “off” or no duty cycle. A signal value
of 255 corresponds to “on” or 100% duty cycle. Intermediate values between 0
and 255 correspond to a duty cycle of

 (x/255) * 100%

where x is the input signal value.

Dialog Box

PWM channel
Select an output channel 0-7.

PWM Output

8-12

Invert polarity
Select this option to invert the polarity of the generated signal. By default,
this option is deselected and the signal is not inverted.

Clock B
Select this option to use Clock B as the timing source. By default, this
option is deselected and Clock A is used.

Center aligned
When this option is selected, the waveform is center aligned.

PWM period
Period of the generated signal. The PWM period is specified as an 8-bit
value with a maximum of 255.

Index-1

Index

A
ADC Input block 8-4
analog-to-digital converter input driver 8-4

B
block libraries 8-2
blocks

ADC Input 8-4
Digital Input 8-6
Digital Output 8-7
Master 8-8
PWM Output 8-10

build directories 5-2

C
code generation options 5-5

Build action 5-6
Force rebuild of static libraries 5-7
restrictions on 5-8

code generation reports 5-10
CodeWarrior project stationery

and memory model 2-12

D
demos for Embedded Target for Motorola HC12

1-11
device drivers, creation of 6-2
Digital Input block 8-6
Digital Output block 8-7

E
Embedded Target for Motorola HC12

code generation options for 5-5

demos 1-11
prerequisites for use of 1-5
related documentation 1-5
required hardware and software for 2-2
setting up 2-4
summary of features 1-2

G
generated files 5-2

H
hardware resource management 8-8
HC12 timing parameters 4-2
hc12_closest_st function 4-4

I
installing Embedded Target for Motorola HC12

1-8
integer-only code 5-7

M
Master block 8-8

and hardware resource management 8-8
and sample time computation 4-6

memory model, selection of 2-12
Motorola EVB912DP256 board 2-6

P
prerequisites for using Embedded Target for

Motorola HC12 1-5
pulse width modulation (PWM) 8-10
PWM Output block 8-10

Index

Index-2

R
reports, code generation 5-10
required products 1-6
requirements for Embedded Target for Motorola

HC12 2-2
resource collisions 8-8

S
sample time, computing 4-6

T
target hardware, configuration of 2-6
target preferences

defined 2-9
editing 2-12
memory model 2-12
properties 2-9
setting 2-9
Setup window 2-9

Target Preferences Setup window 2-12
tutorial, creating HC12 applications 3-5

example model for 3-3
introduction 3-2

	Getting Started
	What Is the Embedded Target for Motorola HC12?
	Feature Summary

	What You Need to Know to Use This Product
	Required Products
	Product Limitations
	Installing the Product
	Using This Guide
	Demos and Test Models

	Configuring the Target
	Hardware and Software Requirements
	Host Platform
	Hardware Requirements
	Software Requirements

	Setting Up Your Installation
	Before You Begin
	Setup Overview
	Verifying Correct Operation

	Setting Up Your Target Hardware
	Setting Up Metrowerks CodeWarrior for HC12
	Installing CodeWarrior for HC12
	Installing Special Plug-in Files for CodeWarrior 1.2

	Setting Target Preferences
	Target Preference Properties
	Editing Target Preferences
	Configuring the Memory Model via Target Preference Properties

	Generating Real-Time HC12 Programs
	Introduction
	Before You Begin

	The Example Model
	Tutorial: Creating an Application with the Embedded Target for Motorola HC12
	Selecting the Memory Model
	Setting the Model Parameters for Code Generation
	Building the Application
	Downloading and Running the Application
	Where to Go Next

	Setting HC12 Timing Parameters
	Introduction
	The hc12_closest_st Function
	Computing the Sample Time for Your Model
	Sample Time Computation and the Master Block

	Code Generation and Code Generation Reports
	Build Directories and Files
	Code Generation Options
	Target-Specific Options
	Generating Integer-Only Code
	Restrictions on Code Generation Options

	Code Generation Reports

	Creating Device Drivers
	Creating Device Drivers for the Embedded Target for Motorola HC12
	Related Documentation
	Overview of Device Driver Development Methodology
	Hardware Resource Management Overview
	Adding Resource Keywords to the hc12regs Package
	Implementing Resource Management Compatible Device Drivers

	Creating Custom Project Stationery
	Creating Custom CodeWarrior Project Stationery
	Introduction
	Project Stationery Structure Overview
	Overview of MathWorks Project Files
	Setting Up the Project Stationery Directories
	Setting Up the rtwlib Subproject
	Creating an Empty MathWorks Project File
	Modifying the CodeWarrior Project File (.mcp File)
	Using The New Project Stationery

	Block Reference
	Blocks – Categorical List
	I/O Device Drivers
	Timing and Resource Management

	Blocks - Alphabetical List

	Index

